
www.manaraa.com

www.manaraa.com

r-PLEY KNOX LIBRARY

NAV/L POSTGRADUATE SCHOOL

MONTEREY. CALIFORNIA 93343

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
PRINCIPLES OF SOFTWARE

ENGINEERING ENVIRONMENT DESIGN

by

John Richard Frost

June 1984

Thesis Advisor B. J. MacLennan

Approved for public release; distribution unlimited

T222044

www.manaraa.com

www.manaraa.com

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Zntered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Principles of Software Engineering
Environment Design

5. TYPE OF REPORT 4 PERIOD COVERED

Master's Thesis
June 1984

6. PERFORMING ORG. REPORT NUMBER

|7. AUTHORfj;

1 John Richard Frost

6. CONTRACT OR GRANT NUMBERftJ

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBERS

11, CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

12. REPORT OATE
June 1984
13. NUMBER OF PAGES

107
U. MONITORING AGENCY NAME 4 ADDRESSf/ different from Controlling 6'lflca) 15. SECURITY CLASS, (ot thla report)

UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide It neceeaary and Identity by block number)

Software engineering, programming environment, software design

20. ABSTRACT (Continue on reverae aide It neceeaary and Identify by block number*

The history of programming languages, operating systems and com-
puter hardware is briefly reviewed. Then the general methodology
of established engineering disciplines is examined. Software
"engineering" is then examined in light of its history and by
analogy with the general engineering methodology. Here, a critical
difference between software engineering methods and those of other
disciplines is revealed. Software design is not separated (Cont)

DO , ^N
RM

73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S 'N 0102- LF- 014-6601
L SECURITY CLASSIFICATION OF THIS PAGE (Whan Dmtm Bnfrad)

www.manaraa.com

SECURITY CLASSIFICATION OF THIS PAGE fWh«n Dm* Bntt*4)

ABSTRACT (Continued)

from its implementation nor is there an effective means to com-
municate a software design from a designer to an implementor. It

is shown that without an analog to the engineering blueprint,
software engineering is not, and cannot become, a true engineering
discipline. In following the engineering analogy, twenty-one
principles of software engineering environment design are put
forth. These touch on technical, management and ergonomic issues
Finally, it is concluded that work on software engineering en-
vironments holds much more promise for improved productivity than
the traditional approach of programming language design.

S N 0102- LF- 014- 6601

seeumTY classification of this PAoer»»>«« £•«• Bnfnd)

www.manaraa.com

Approved For Public Release, Distribution Unlimited

Principles o-f Software Engineering Environment Design

by

John Richard Frost
Lieutenant Commander, United States Coast Guard

B.S., Florida State University, 1969

Submitted in partial fulfillment o-f th<

requirements -for the degree o-f

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1984

www.manaraa.com

pi
c i

The history o-f programming languages, operating systems

and computer hardware is brie-fly reviewed. Then the general

methodology o-f established engineering disciplines is exam-

ined. So-ftware "engineering" is then examined in light o-f

its history and by analogy with the general engineering

methodology. Here, a critical di-f-ference between so-ftware

engineering methods and those o-f other disciplines is re-

vealed. So-ftware design is not separated -from its imple-

mentation nor is there an e-f-fective means to communicate a

so-ftware design from a designer to an implementor. It is

shown that without an analog to the engineering blueprint,

so-ftware engineering is not, and cannot become, a true

engineering discipline. In -following the engineering analo-

gy, twenty-one principles o-f so-ftware engineering environ-

ment design are put -forth. These touch on technical, man-

agement and ergonomic issues. Finally, it is concluded that

work on so-ftware engineering environments holds much more

promise -for improved productivity than the traditional ap-

proach o-f programming language design.

www.manaraa.com

93943

TABLE OF CONTENTS

I. INTRODUCTION 7

A. THE "SOFTWARE CRISIS" 7

B. SOFTWARE ENGINEERING 9

C. THE SOFTWARE ENGINEER 12

D. SOFTWARE ENGINEERING ENVIRONMENTS 13

E. OUTLINE OF THE THESIS 14

II. HISTORICAL PERSPECTIVE 16

A. PROGRAMMING LANGUAGES 16

B. OPERATING SYSTEMS 25

C. HARDWARE 27

D. CONCLUSIONS 29

III. ENGINEERING METHODOLOGY 31

A. INTRODUCTION 31

B. DESIGN 32

C. IMPLEMENTATION 40

D. MAINTENANCE/EVOLUTION 42

E. MANAGEMENT 43

F. DESIGN DOCUMENTATION 46

G. CONCLUSION 49

IV. SOFTWARE ENGINEERING ISSUES 50

A. INTRODUCTION 50

B. TECHNICAL ISSUES 52

www.manaraa.com

C. CONCLUSIONS 66

V. MANAGERIAL ISSUES 68

A. PLANNING 69

B. CONTROL 72

C. ORGANIZATION 73

D. CONCLUSIONS 73

VI. ERGONOMIC ISSUES 75

A. INTRODUCTION 75

B. USER ENGINEERING PRINCIPLES 77

C. CONCLUSIONS 86

VII. CONCLUSIONS AND RECOMMENDATIONS 87

A. SOFTWARE DEVELOPMENT AS "ENGINEERING" 87

B. SOFTWARE ENGINEERING ENVIRONMENTS 90

C. FUTURE WORK 91

D. CONCLUSIONS 92

APPENDIX A: PRINCIPLES OF LANGUAGE DESIGN 93

APPENDIX B! PRINCIPLES OF SOFTWARE MANAGEMENT 95

APPENDIX C: CHARACTERISTICS OF A METHODOLOGY 97

APPENDIX D: TWENTY HYPOTHESIZED PROBLEMS IN SEPM 98

APPENDIX E:
PRINCIPLES OF SOFTWARE ENGINEERING ENVIRONMENT DESIGN - 101

LIST OF REFERENCES 104

INITIAL DISTRIBUTION LIST 107

www.manaraa.com

I - INTRODUCTION

A. THE "SOFTWARE CRISIS"

In the late sixties it was realized that the importance

of software was rapidly exceeding that of the hardware on

which it was implemented. This was manifested by sharply

escalating software costs while the cost of hardware under-

went rather dramatic decreases. The reduced cost of compu-

ters increased the demand for them and hence their numbers

and the number and variety of applications in which they

were used also increased. There was a growing demand for the

ability to convert existing applications software to make it

executable on the newer, more powerful and less expensive

hardware. The complexity and size of new applications also

increased significantly with corresponding increases in the

complexity and size of the software needed to support them.

This in turn led to a far greater demand for software than

the existing software industry could supply. Furthermore,

it became apparent that software was not a "consumable"

product that was used once or a few times and then dis-

carded. It was becoming more and more like a large capital

investment in a physical plant that required maintenance,

alteration and enhancement throughout its relatively long

useful life.

www.manaraa.com

Un-f ortunatel y, it was extremely difficult to make even

trivial changes to the software o-f the day in a reliable,

efficient, and effective manner. This was especially alarm-

ing since the cost o-f developing software seemed to grow

exponentially with its size and complexity. This meant that

even after making a substantial investment in software to

support a complex application, the user faced an even

greater cost in maintaining its continued usefulness. In

fact, it was found that most of the cost of a software

system often occurred after it became operational leaving

fewer and fewer resources available for new software devel-

opment. It was from such observations and concerns that the

term "software crisis" was born.

Unhappily, things have not changed much and so a decade

and a half later we still speak of being in the midst of a

"software crisis" even though this immensely popular, but

inaccurate, description may have done as much to obscure the

real issues as it has to call attention to the legitimate

concerns of the industry.

Often the exact word used to describe an imprecisely

understood situation is not of paramount importance. How-

ever, "crisis" usually describes a brief situation which is

largely beyond the control of those affected and in which

immediate, short term actions may significantly affect their

chances for survival. The so-called "software crisis"

clearly has not been brief and is not beyond the control of

8

www.manaraa.com

those affected since they are also its creators. "We has

met the enemy, and it is us.", from the comic strip Pogo by

Walt Kelly accurately describes the current situation. Fur-

ther, this "crisis" has not threatened the industry's sur-

vival, and immediate, short term actions, while o-ften help-

ful, have not significantly reduced or altered the scope o-f

the problem. Unfortunately, the perception of the software

dilemma as a crisis has led to many proposals of limited

scope, usually dealing with technical issues alone, that

taken singly have had very little impact. If we are to have

a more pronounced effect, we must broaden our outlook

considerably,

B. SOFTWARE ENGINEERING

Shortly after the existence of the "software crisis" was

recognized came the first hint that it wasn't really a

crisis but merely an undesirable situation in urgent need

of amelioration. In the early seventies the term "software

engineering" began to appear in the literature with increas-

ing frequency. This is significant because it implies a

recognition of the need for a disciplined, orderly and

effective way to approach the problem of producing high

quality software efficiently. Rather than merely responding

to the more glaring aspects of a "crisis", we can and should

develop engineering methodologies for the formulation and

analysis of problems having software solutions and for the

www.manaraa.com

specification, design, development, implementation, main-

tenance, and evolution of practical software systems that

solve such problems. We also need, o-f course, to include in

our methodologies a way o-f determining when a problem does

not have a feasible software solution.

Although the term "software engineering" is now in

rather common usage, finding a definition of the term is

surprisingly difficult, even in texts devoted to the sub-

ject. One particularly extreme example is CRef. ID where

the page given in the index as containing that author's

definition is completely blank! Nor is a definition to be

found elsewhere in the text. However, some definitions can

be found and we will state and analyze two of them here.

In CRef. 23, Boehm presents the following definition:

Software Engineering- The practical application of

scientific knowledge in the design and construction of

computer programs and the associated documentation re-

quired to develop, operate, and maintain them.

and in CRef. 3] Jensen and Tonies offer Bauer's definition

taken from CRef. 43:

The establishment and use of sound engineering prin-

ciples (methods) in order to obtain economically soft-

ware that is reliable and works on real machines.

10

www.manaraa.com

The -first definition has rather little to offer since

the base o-f well established "scientific knowledge" in soft-

ware design and construction is still quite small. However,

this should not concern us too greatly. Humans were under-

taking engineering projects of significant size and com-

plexity, some of which have lasted more than a thousand

years, long before there was an established base of scien-

tific knowledge applicable to them. In other words, engi-

neers have never relied on scientific knowledge alone or

waited for scientific advances before attacking pressing

problems. Experience, ingenuity, and just plain trial-and—

error have long been hallmarks of the engineering

prof essi on.

The second definition may have more to offer. In the

words of Jensen and Tonies CRef. 33 it "...encompasses the

keywords that are the heart of all engineering discipline

definitions: sound engineering principles, economical,

reliable, and functional (works on real machines)." The

critical question is whether we can reason by analogy from

the sound engineering principles of other (non-software)

engineering disciplines in general to a set (not necessarily

complete) of sound engineering principles for software engi-

neering in particular. Another somewhat less critical ques-

tion is whether principles that at first appear unique to

software engineering can be effectively applied to other

11

www.manaraa.com

disciplines. The former question will be o-f great concern

throughout the remainder o-f this thesis.

C. THE SOFTWARE ENGINEER

'Je turn now to the problem o-f de-fining, or at least

identifying, the software engineer. In other engineering

disciplines, we find "engineers" in many different roles.

These range from that of a technician with limited formal

education to that of a researcher with a doctorate degree.

They also include many managerial functions. There are

"chief engineers" who manage the engineering resources of a

company, "project engineers" who Are concerned with only a

specific project or product line, "design engineers" who

create and document designs, "production engineers" who de-

termine how designs Are to be implemented (manufactured),

"quality assurance engineers" who devise and CArry out tests

on subassemblies and the finished product, "maintenance

engineers" who perform preventive maintenance, repair and

field alteration or upgrade functions, etc. In short, when

we use the term "engineer" with respect to a particular

product, we Are speaking of anyone employed by the manufac-

turer who is responsible for any of the technical aspects of

that product or directly manages those who Are. Even the

most cursory survey of the literature will show that all of

the above functions have already been identified as being

important to software engineering.

12

www.manaraa.com

D. SOFTWARE ENGINEERING ENVIRONMENTS

The problem with which we are faced can be stated as

-Follows: "How can the productivity o-f competent software

engineers at all levels be substantially improved?" Since

competence is assumed, we must look at how these people are

organized and used, and at the conditions under which they

a.rs required to work. In other words, we must examine the

work environment.

Environment tends to be a rather al 1—inclusive term. It

includes such obvious things as lighting, the architecture

o-f the building, layout o-f office spaces, air quality, noise

level, etc. It also includes the equipment and tools used

for the production of products or as aids in carrying out

other necessary functions (specification, design, main-

tenance, quality assurance, project management, etc.).

Equipment and tools typically include all of the machinery

and tools on the production floor, drafting equipment (de-

sign and design documentation), test equipment and accurate

measuring devices (quality assurance), and computers.

In this thesis, we will focus on the equipment and tools

portion of the total environment. We will define, for

purposes of this discussion, a software engineering environ-

ment as the set of automated tools available for carrying

out the various activities associated with (1) the formula-

tion and analysis of the target problem, (2) the speci-

fication, design, development, implementation, quality

13

www.manaraa.com

assurance, maintenance, alteration, and enhancement of the

software to solve that problem, and (3) the management of

the personnel and other resources used in all these activi-

ties. The purpose of this thesis is to present principles

that should be used to guide the design of such

envi ronments.

E. OUTLINE OF THE THESIS

In the next two chapters we will build the basic

knowledge base needed in order to pursue a meaningful dis-

cussion of software engineering environment design. Chapter

II will provide a brief historical perspective on how our

present views of computers and software evolved. The objec-

tive will be to identify as many prejudices and hidden

assumptions as possible so we may relieve ourselves of their

burden. The three main areas of discussion will be the

programming language, operating systems, and hardware devel-

opments of the past 40 years.

Chapter III will present and discuss an outline of the

general engineering methodology which seems to be common to

all current fields of engineering. The objective here will

be to provide a generalized model of the activities we call

"engineering" with a view toward applying this model to

software engineering in later chapters.

Chapter IV will be concerned with software engineering

issues. Given the background material on the general

14

www.manaraa.com

engineering methodology and the historical perspective of

the computer industry, we will analyze why "so-ftware engi-

neering" is not yet a mature engineering discipline. We

will suggest how the maturation process might be accelerated

through the software engineering environment concept.

Chapter V will be concerned with some so-ftware manage-

ment issues. Although we will not have time to examine

these issues very deeply, we will emphasize their importance

to the overall so-ftware engineering process and we will

point out some types o-f automated aids which a so-ftware

engineering environment could provide.

In Chapter VI we will discuss ergonomic issues. That

is, we will look at the man—machine inter-face and emphasize

its importance to the successful use o-f interactive tools.

We will also argue that an integrated environment is needed,

whereas a mere "toolkit" o-f loosely related automated aids

is not sufficient.

Finally, in Chapter VII we will draw some conclusions

and address some philosophical issues. In addition, the

principles which will be developed throughout the thesis

will be gathered together in a compact form and placed in

the appendix.

15

www.manaraa.com

±1^ HISTORICAL PERSPECTIVE

A. PROGRAMMING LANGUAGES

* Introduction

Even though the general history of programming lan-

guage evolution is well known, we will review part of it

here for the purpose of highlighting certain events and

concepts that are key to our understanding of the present

state of affairs regarding software engineering environ-

ments. We will accomplish this by following a line of de-

scent that leads more or less directly from the first major

high-level language, FORTRAN, to one of the most recent —

Ada. In particular, we will wish to ponder the question of

which software engineering problems are best addressed by

programming language design and which are best addressed by

other means.

In CRef. 53, MacLennan develops a number of prin-

ciples which can be applied to the design of programming

languages. However, these principles are, by and large,

applicable to most engineering design problems and are not

specific to language design. For this reason, they are

listed in Appendix A for ease of reference. In spite of

their general nature and the fact that he uses some very

early programming techniques (pseudo—code interpreters) and

languages (FORTRAN and Algol) to illustrate them, only one

16

www.manaraa.com

o-f the principles he cites seems to have been consciously

followed in those early days. Significantly, it is the

first one mentioned in CRef. 5D and is quoted below:

The Automation Princi pie

Automate mechanical, tedious, or error-prone activities.

The key to programmer productivity seemed to lie in

providing higher levels of abstraction for programming pur-

poses which could then be reduced to machine level instruc-

tions by automatic means. Given the lack of previous expe-

rience and the hardware limitations of the period, the

higher level languages developed prior to 1970 turned out

remarkably well. However, there were some unspoken, perhaps

even unconscious, assumptions about software that became

increasingly false with the passage of time. These included

such assumptions as

Programs apply to specific, well-defined problems.

Programs are at most a few thousand lines long.

Programs have a relatively short life expectancy.

Programs are rarely modified.

While the incorrectness of some of these became apparent to

writers of "systems software" (e.g. operating systems and

compilers) as early as 1960, their incorrectness with

17

www.manaraa.com

respect to "applications so-ftware" (i.e. programs written by

users -for their own purposes) was not appreciated until

much, much later. Because high-level languages were thought

of as applying more to applications so-ftware than to systems

so-ftware, this lack o-f -foresight was the main contributor to

the shortcomings o-f high—level languages and the paucity o-f

other so-ftware development tools -for many years.

2. FORTRAN

The first major high-level language was FORTRAN. It

was developed by John Backus o-f IBM between 1954 and 1958.

FORTRAN is an acronym -for FORmula TRANslation and this is

precisely what the language was designed to do. It was

aimed at the numerical problems of the scientific community.

It was heavily machine dependent, as the correspondence

between its control structures and the branching instruc-

tions of the IBM 709 computer shows. From a linguistic

point of view, it was "grown" more than designed. In fact,

Backus is quoted in CRef. 53 as saying (in 1978), "As far as

we were aware, we simply made up the language as we went

along. We did not regard language design as a difficult

problem, merely as a simple prelude to the real problem:

designing a compiler which could produce efficient pro-

grams." Although FORTRAN was to come under heavy fire on

linguistic grounds in later years, it was enormously suc-

cessful. It proved the viability of high-level languages

when many doubted their feasibility and it was a huge

18

www.manaraa.com

commercial success. Much o-f its initial machine-dependence

was removed in later versions and it became available on the

computers o-f almost every manufacturer.

3. Algol

After FORTRAN proved that programs written in high-

level languages could be automatically translated to ef-

ficient and logically eguivalent machine language programs,

a number of computer scientists on both sides of the Atlan-

tic decided that a new "universal", machine independent

language suitable for communicating algorithms between hu-

mans as well as between humans and machines was needed. The

end result was a language called Algol. The work on Algol

produced a great many significant advances in programming

language design, probably more than any other single piece

of work to date. Nevertheless, its goals were essentially

the same as those of FORTRAN and it too suffered from the

tacit assumptions stated above.

Algol suffered from another problem as well. In

their enthusiasm for increased expressive power, the design-

ers of Algol included some very general control structure

constructors. These made it possible to represent some very

sophisticated algorithms very compactly, but at the same

time made those representations almost unreadable and in

some cases misleading to all but the most experienced.

Despite this generality, Algol remained a relatively compact

language until its 1968 (Algol-68) incarnation.

19

www.manaraa.com

4. PL/I

Algol wasn't the only language to suffer -from the

drive to generalize. While FORTRAN and Algol were aimed at

scientific computing, another language named COBOL (COmmon

Business Oriented Language) was developed. Having never

jumped on the Algol bandwagon, IBM wanted to develop a

"universal" language of its own aimed at both the scientific

and business communities. It therefore began an effort in

1964 to extend FORTRAN with ideas from COBOL and Algol. It

soon became evident that instead of an extended FORTRAN, a

completely new language would result. This language was

called PL/I (Programming Language One). It was an extremely

large and complex language, the mastery of which was next to

impossible. It had so many features which could interact in

so many different ways that it wasn't even possible for an

individual programmer to learn only a subset of features for

his own use while ignoring the remainder. The drive to

incorporate in one language all the features that any pro-

grammer could possibly want or use very nearly resulted in a

language that no programmer could understand.

5. Pascal

Other significant events in software development

were taking place. In 1966 Bohm and Jacopini published

CRef. 6D proving that any flowchart can be converted to one

containing only certain types of flowchart elements — the

so-called "structured programming" forms. The significance

20

www.manaraa.com

o-f this work was that it showed complex and undisciplined

control structures to be unnecessary. In the years that

followed, many computer scientists argued that use of com-

plex control structures was also unwise. A new concern for

such things as software readability and reliability was

growing as some of the earlier assumptions about the nature

of software began to crumble under the weight of experience.

Unfortunately, those assumptions listed earlier still re-

mained largely intact as shown by the following excerpt

taken from Dijkstra's now famous 1968 letter ERef. 71 to the

editor of the Communications of the ACM: "My first remark

is that, although the programmer's activity ends when he has

constructed a correct program, ..."

In 1970 the language Pascal was introduced. Its

control structure constructors were simple and direct imple-

mentations of those associated with the new concept of

"structured programming". Pascal was also a strongly typed

language and had a block structure similar to that of Algol.

This new language represented a quantum change in the nature

of programming languages in its attempt to encourage and/or

enforce certain programming practices. The emphasis on pro-

gramming style was consistent with its goal: to be a suit-

able language for teaching programming. Because of its

small size, excellent (though certainly not perfect) design,

rich and efficient set of data structure constructors, and

its strong typing it has not only met its original goal; it

21

www.manaraa.com

has been successfully extended and used in many "real world"

applications. Like Algol be-fore it, Pascal has influenced

the design of almost all later languages, including one of

the latest - Ada.

6. Ada

Finally during the seventies the early assumptions

about programs having a short life, being rarely modified,

being relatively small, and being applied to specific, well-

defined problems were revealed and discarded — violently.

Everywhere one turned in the computing world, the phrase

"software crisis" seemed to be emblazoned in neon lights.

The situation wasn't far short of a general panic. Everyone

seemed to have an idea of what the "key" problem was and

thought that solving that one problem would cure most, if

not all, of the software industry's ills. Of course, for

each such perceived problem there was at least one proposed

solution. The only central point of agreement was that

something had to be done.

Into these stormy seas was launched the Department

of Defense project to develop a new standard language to

meet the needs of software development for "embedded" compu-

ter applications, i.e. situations where a computer is con-

tained in and an integral part of a larger system (e.g.

weapons systems and command, control and communications

systems). DOD's experience with such software had been an

expensive one up to this time. A wide variety of languages

22

www.manaraa.com

were employed and some of them were used nowhere else in the

world. This made so-ftware maintenance and the integration

o-f subsystems -From di-fferent vendors extremely difficult.

The outcome of the work to overcome these and other dif-

ficulties was the programming language Ada.

Like PL/ I, Ada has drawn on several earlier lan-

guages and like PL/ I it is a very large and complex lan-

guage. However, the reasons for its large size and com-

plexity are quite different from those of PL/I. The two

main driving forces behind Ada's size are its generalization

and improvement of Pascal features and its attempt to in-

corporate a number of software engineering/management func-

tions. For example, software design reusability is ad-

dressed by generic packages which contain templates for

generating Ada code. Like many other languages, Ada sup-

ports separate compilation of modules but unlike them it

also provides a considerable amount of error checking across

modules. It remains to be seen if these and the many other

features introduced by this new language have been chosen

and implemented with sufficient care to avoid repeating the

PL/I experience.

Another aspect of Ada which is of particular in-

terest here is the inclusion of an Ada program support

environment (APSE) in DOD's overall software development

strategy for embedded systems. The rationale for this is

described in CRef. 81. Unfortunately, the implementation of

23

www.manaraa.com

a standard APSE is still -far in the future even though at

least one Ada compiler has already been implemented and

certified. Nevertheless, the ongoing DQD effort stands as

the most comprehensive approach to a software engineering

environment to date.

7. Summary

The first high— level language had only one goal:

the automatic translation of mathematical notation to effi-

cient machine language programs. Later, more expressive

power and generality were incorporated with little thought

given to the conseguences or implications of such a move.

These traits and the changing nature of the software being

developed caused many to question the wisdom of large com-

plex languages. Many programming practices were questioned

and a number of techniques such as structured programming,

modular programming, etc. were devised. Out of this work

came languages that in addition to performing the transla-

tion function also encouraged these newer techniques. While

this initially resulted in a smaller, simpler language, the

latest offering has tried to address so many programming

issues that its great size and complexity has led many to

doubt its viability. To quote C. A. R. Hoare CRef. 9] on

Ada, "We relive the history of the design of the motor car.

Gadgets and glitter prevail over fundamental concerns of

safety and economy.

"

24

www.manaraa.com

B. OPERATING SYSTEMS

In the very earliest days o-f electronic computers, those

who designed and built them also operated and programmed

them. The early machines were dedicated to single users.

Be-fore a program could be run, there was a certain amount of

"setup" work to be done to get the machine ready. It wasn't

long be-fore the operators/programmers wrote software to

automate some of the setup activity. This marks the begin-

nings of what we now call operating systems.

As long as computers were dedicated to single users,

operating systems were only used to provide services to the

human operator. Later, as computers grew into complex com-

puting systems capable of processing many programs concur-

rently and utilizing a large number and variety of periph-

eral devices, software was developed to manage system re-

sources. The objectives of this management included (1)

security to control the interaction between applications

programs and the hardware and to keep applications programs

from interfering with each other, and (2) maxima* throughput

to ensure that the system's resources were utilized as

efficiently as possible.

By this time computers were being widely used commer-

cially and customers demanded, in addition to an operating

system to manage hardware resources, that a growing number

and variety of service or utility programs be supplied as

well. Vendors supplied file management subsystems, high

25

www.manaraa.com

level language compilers, accounting software -for resource

usage, etc. Since all o-f these were tightly coupled with

the "bare" operating system and were supplied along with it

in one package, the entire package came to be called "the

operating system." As the hardware continued to grow in

capability while decreasing in cost, interactive use re-

placed the previous batch mode o-f operation. This led to

even more demands on the operating system and its associated

utilities. Interactive communications with large numbers o-f

terminals, on—line utilities -for -file creation and manipula-

tion, and text editors were but a -few o-f the many additional

demands placed on "operating systems."

What all this means is that, in e-f-fect, so-ftware devel-

opers have come to view the operating system as the "so-ft-

ware engineering environment." Un-f ortunately, so many de-

mands are placed on an operating system that its developers

can give only limited attention to so-ftware engineering

utilities. So -far, these are usually limited to assemblers,

compilers, subroutine libraries, a limited object code

librarian facility, linkers, loaders, general purpose text

editors and file manipulation utilities, assembly level

debuggers, and, with luck, source level debuggers that are

consistent with the compilers. As we will see in Chapter

IV, these tools address only a small fraction o-f the funda-

mental needs of a "software engineering environment.

"

26

www.manaraa.com

C. HARDWARE

We will not recount the history of computer hardware

here since it is so well documented elsewhere. However, it

is important to examine the changing nature o-f human-machine

interaction that has resulted from hardware advances.

We have already noted how the difficulty of machine

language programming led to the invention of high-level

languages and how the desire to automate operator functions

led to the development of operating systems. Another impor-

tant characteristic of the earlier computers was that they

operated almost exclusively in batch mode. Programs were

recorded on punched cards and submitted in their entirety

for translation to machine code. Programs were altered by

removing, replacing and moving punched cards within the

"source deck." Since nothing could be done to automate this

manual process, software programming aids were necessarily

limited to the features of the programming language itself,

the diagnostic abilities of the compiler, and the diagnostic

abilities of the operating system (register status reports

on program abortion, "core dumps", etc).

When the hardware became capable and cheap enough to

support interactive users and vast amounts of online stor-

age, the possibilities for new applications, including soft-

ware engineering environments, exploded. Furthermore, the

continued decrease in computing costs means the possibili-

ties are continuing to expand at a dizzying pace. We can

27

www.manaraa.com

now put the computing power, speed and data storage capa-

bility o-f what was a mul t i mi 1 1 i on dollar main-frame computer

a -Few years ago on the desk of every individual in an or-

ganization, 1 -f we so desire. Likewise, the cost o-f graphics

display devices have fallen into the realm of af f ordabi 1 i ty

.

If one picture really is worth a thousand words, there are

few places where pictorial representations would be more

welcome than in software development. Whether we can effec-

tively apply such vast amounts of computing power to appli-

cations in general will depend in large part on how much of

that power we can apply to software engineering environments

in particular.

Another hardware topic currently under vigorous debate

involves instruction sets. We have seen how hardware avail-

ability influenced the growth and nature of high—level pro-

gramming languages. This was not a one—way street, however.

After a time, hardware designers began to consider how high-

level languages would be implemented on the hardware they

were designing. Soon they began to include instructions

specifically for certain high—level constucts. For example,

special index registers and instructions were included for

iterative loops and Array indexing. The hardware stack,

immensely useful for languages that permitted recursion, was

another feature frequently added (see p. 39 of CRef. 103).

Even more elaborate and "high-level" instructions have been

included on some machines.

28

www.manaraa.com

This trend has been called into question by supporters

o-f a concept popularly called "RISC" - Reduced Instruction

Set Computers CRef. 113. RISC adherents claim that a small

instruction set made up o-f very simple and very fast opera-

tions is better than a very large one more (apparently)

attuned to high—level languages. They claim increased ef-

ficiency based on research which indicates that a reasonably

"intelligent" compiler could do more optimization and there-

fore generate more efficient object code than it could if

forced to use the "higher-level" and more complex instruc-

tions. They also claim more reliability based on the old

notion that simple machines are inherently more reliable

than complex ones. There may be a lesson here for designers

of software engineering environments. Which is better, a

simple language supported extensively by the environment or

a large, complex language that presumably requires less

support?

D. CONCLUSIONS

The vast majority of research and development effort ex-

pended in the computer field since its beginnings in the

1940s has been directed toward three major areas: program-

ming languages, operating systems, and hardware. The criti-

cal importance of software was recognized in the early

seventies along with a rather long list of problems encoun-

tered in the design, development, and maintenance of

29

www.manaraa.com

reliable, e-f-fective software. The primary vehicle for ad-

dressing these problems was language design. Pascal and Ada

are two related examples of languages designed during this

period. However, the persistence o-f the "so-ftware crisis"

indicates that language design alone, while important, will

not solve the pressing problems of the software industry.

Advances in hardware and operating systems have made a great

deal of computing power available to software developers but

they have not yet harnessed more than a tiny fraction for

their own purposes.

30

www.manaraa.com

llli. ENGINEERING METHODOLOGY

A. INTRODUCTION

The "engineering" o-f a product can be thought o-f as -Four

basic types o-f activity. These are design, implementation,

maintenance/evolution and the management o-f all these activ-

ities. We will discuss each o-f these brie-fly in the

sections that -follow.

Be-fore we begin to look at the general nature o-f en-

gineering as a human activity, we should dispense with one

particular misconception that seems to haunt the software

industry. In CRe-f. 123, Peters notes that, "Many software

developers who lack an engineering background think o-f en-

gineering as an exact discipline that produces formulated,

precise, closed—form solutions to problems. The inexacti-

tude associated with software design seems intolerable to

many designers, who feel that if there were a true engineer-

ing discipline for software, all estimating and scheduling

problems would go away." He continues, "Actually, nothing

could be further from the truth: Engineering depends as

much on common practice and empirical knowledge as it does

on scientific fact." Certainly this observation is borne

out by the number of times "rules of thumb," "safety fac-

tors," and the like a.re used in all engineering disciplines.

www.manaraa.com

As we look at the general engineering method for clues

regarding the way we should conduct software engineering

endeavors, we must not lose sight o-f our objective. Ule wish

to improve the ability o-f software engineers to produce high

quality software efficiently. Any such improvement that

promises significantly more in benefits than it consumes in

resources is worth exploring.

B. DESIGN

ii Introduction

According to Jensen and Tonies CRef. 33, the engi-

neering design process can be broken into six phases. These

are illustrated in Figure 1. Note its neat, straight line

structure. While it provides a good way organize the dis-

cussion which follows, it is not very representative of the

way an engineering project actually proceeds. Recognizing

this, Jensen and Tonies provide a second diagram in CRef. 33

which is reproduced here as Figure 2. With its numerous

feedback loops, it is a much more accurate rendition of

actual engineering processes.

One other feature of these diagrams requires com-

ment. The "Implementation" phase is included because of the

importance o-f its feedback to all the other phases. In the

discussion which follows, implementation will not be con-

sidered part of the design process but, for reasons which

will become clear, as a separate entity.

www.manaraa.com

solutions to similar

problems

recognition of problem

to be solved

\ 1 /
irrelevant information

and misleading data

PR08LEM
FORMULATION

general formulation of problem

PROBLEM
ANALYSIS

detailed problem definition

,
, (specs, limits, criteria, etc.)

SEARCH

potential solutions

and partial solutions

DECISION

chosen solution (rough form)

SPECIFICATION

reports

and documentation design

documentation

7detailedV
design v

model

IMPLEMENTATION

working solution

Fig. 1 Engineering Design Process

www.manaraa.com

NEW PROBLEM

IMPLEMENTATION

SPECIFICATION

DECISION

ANALYSIS

SEARCH

Fig. 2 Realistic Engineering Design Process

34

www.manaraa.com

2. ECQ^l^fD E2C!DyL§ii.on

According to [Ref. 33, the inputs to the problem

formulation process are the recognition of the problem to be

solved, solutions to similar problems, and a -fair amount o-f

irrelevant and misleading information. The output is a

general, but accurate, statement of the problem to be

solved. The primary goal of the engineer in this phase is

to gain a broad perspective on the problem and to remove

prejudices caused by "misleading opinions, current solu-

tions, and standard ways of viewing the problem." CRef. 3]

This usually involves a great deal of human—to—human com-

munication as all parties try to bridge what William James

characterized as, "The most immutable barrier in nature...",

the one, "... between one man's thoughts and another's."

Another objective of the engineer at this time is to

avoid thinking of possible solutions. A method frequently

used is the so-called "black box" technique. Here, the

problem is viewed as that of finding a process to transform

inputs to outputs (e.g. steel into car bodies). In this

phase, the objective is to identify the inputs and outputs

but to keep the details of the transformation process hidden

in the "black box" that forms the bridge between them.

3. Pr.Qbl.em Anal^s^s

In this phase, the engineer sets out to sharpen his

understanding of the problem and to formulate a list of the

constraints and requirements that will be placed upon any

www.manaraa.com

solution. These constraints and requirements may be imposed

by management (e.g. company standards), the customer (e.g.

price and delivery date), or nature itself (e.g. strengths

o-f materials). Another objective is to develop criteria for

selecting the best o-f several possible solutions later in

the project. Engineers, being pragmatists, normally will

see several ways o-f solving any problem and so there must be

some criteria -for choosing among them.

One o-f the most useful ways o-f sharpening one's

understanding o-f a large and complex problem is to decompose

it into successively simpler problems. This technique is

known as stepni se or successive refine»ent. Although there

is no -fixed algorithm -for this process, engineers usually

try to do functional decompos i tion. That is, they try break

the overall function a device must perform into a set of

smaller and simpler functions which have a composition

equivalent to the original total function. Since more than

one decomposition is possible, there may be several attrac-

tive alternatives.

During problem analysis it all but impossible to

keep from thinking of potential solutions. It is natural

for solutions or partial solutions to suggest themselves

during the analysis. The disciplined engineer will note

these and lay them aside for consideration during the search

and decision phases. The undisciplined engineer may well

allow his analysis to become biased by a potential solution.

36

www.manaraa.com

4. Search

In this phase the objective is to locate and de-

scribe as many potential solutions as time and other re-

sources permit. The broader the field of selection the more

ideas the engineer will have to draw upon in selecting the

approach he will finally use. It is important at this point

that no attempt be made to eliminate potential solutions or

partial solutions no matter how awkward they might seem on

the surface. Selection is the objective of the next phase

while collection is the objective of this phase.

Up to this point we have been using the term "solu-

tion" without having defined it in any special way. While a

special definition is probably not necessary, it is impor-

tant to realize its use in the current context implies an

approach or route to be followed in obtaining a complete and

detailed solution and not the complete solution itself.

5. Deci^s^on

This phase is where the various proposals are objec-

tively compared to find a "best" approach to use for com-

pleting the solution design in sufficient detail to enable

implementation. In order to carry out such an objective

comparison, CRef. 3D proposes the following four steps:

1. The selection criteria must be defined, and the
relative weight of the individual elements of the
criteria assigned;

www.manaraa.com

2. The performance of the alternate solutions with
respect to these criteria must be predicted as
accurately as possible;

3. The performance o-f the alternate solutions must be
compared on the basis o-f their predicted
performance;

4. The selection of the preferred solution must be
made.

The selection criteria may be based on a number

diverse aspects of problem solution such as deadlines for

product delivery, availability of the technology required to

implement the solution, manufacturing costs, product per-

formance, reliability, maintainability and ease of use, etc.

The assignment of weights is necessarily a difficult and

subjective task but the most difficult part of this process

is the performance prediction of step two. Such predictions

can only be based on rough estimates and the judgement of

the engineer since the solutions themselves 3ire still rather

vague and ill-defined. Furthermore, it is almost certain

that none of the proposed approaches will provide the "opti-

mal" solution (even if one could be recognized as such)

because the search phase did not exhaust the solution space

but merely sampled from it. For this reason, it is a very

poor engineer who can study the design of a very good engi-

neer without finding some way to improve upon it.

6. Specification

This is the phase we most often associate with

engineering design. It is here that the rough solution is

refined and developed in considerable detail, and the bulk

38

www.manaraa.com

of the design documentation produced. The design documenta-

tion is an absolutely necessary and integral part o-f any

engineering methodology. Its most obvious purpose is to act

as the output o-f the design process and provide all the

in-formation necessary -for actual implementation o-f the de-

sign. However, design documentation sees considerable ser-

vice prior to completion o-f the design process. It is used

-for design reviews which ensure the continued -feasibility o-f

the solution and provide others involved in the project an

opportunity to suggest improvements while also keeping them

up to date on project progress. Design documentation also

provides an opportunity for error detection. Drawing check-

ers can detect and report such things as internal dimen-

sional inconsistencies, incomplete bills o-f materials, etc.

They can also check to make sure that mating parts, if

within the specified tolerances, will in fact mate in all

cases. Although this is a tedious, mundane task, it is very

important to detect and correct such errors before the

implementation phase begins. Correction of even minor de-

sign errors during implementation can be extremely expensive

whereas their detection and correction prior to that time is

relatively inexpensive.

Once the design has been specified, documented, and

verified a very important event occurs. Up to now only the

design staff under the supervision of the project engineer

has been directly involved. Upon completion, the design is

39

www.manaraa.com

"released" for implementation (production). All of the

design documentation is then passed -from the "engineering"

(design) sta-f-f to the "production" sta-f-f. Although this

does not end the design engineer's involvement in the pro-

ject, it does reduce it rather sharply. With respect to

this project, he becomes a consultant to the "production"

department. He clarifies the design documentation if

needed, makes design changes to accomodate unforseen manu-

facturing difficulties, etc., but is otherwise uninvolved

with the actual implementation of his design.

This separation of design activities from implemen-

tation activities is one of the most important principles of

modern engineering. In the "functional decomposition" of

the engineering process that has occurred naturally over the

years, design and implementation have become separate

modules. The interface between them is the design documen-

tation, which is made up largely of drawings - the well-

known engineering blueprints.

C. IMPLEMENTATION

The last of the phases in the Jensen and Tonies CRef. 31

description of the engineering design process is that of

implementation. It should be clear from the preceeding

discussion why it is considered as a separate entity from

design in this thesis. It is in this phase that an actual

artifact is produced according to the specifications of the

40

www.manaraa.com

designer. For purposes of this discussion, we will postu-

late a "production staff" whose responsibility is to develop

manufacturing and quality assurance methods, and to carry

them out to produce and assemble parts into a complete

working product. Often this staff is broken into three

"departments" — methods, production, and quality assurance.

When a design is released for production, someone must

decide how to manufacture and assemble the component parts

in order to arrive at a finished product. Normally, the

manufacture of a part requires many operations (e.g. machin-

ing operations) to be performed in a specific sequence on a

piece of raw material before completion. This task is often

given to a "methods department" which must develop these

sequences of operations along with intermediate and final

inspections for quality assurance. Once these have been

specified, they are sent to the production and quality

assurance departments along with a work request specifying

how many parts of each type are to be made and blueprints of

the design engineer's original drawings. In this way, the

methods department quite literally "programs" the production

floor (e.g. machinists and inspectors) with respect to the

manufacture and inspection of each part. (Keeping the total

production floor operating efficiently for maximum through-

put (productivity) and minimum idle time is the job of the

production department.) This "programming" function becomes

even more obvious when numerically controlled (NO machines

41

www.manaraa.com

are used. Methods departments also "program" the assembly

floor in a similar fashion by providing instructions -for

assembling the parts and testing the assemblies to ensure

they work properly. They may also be charged with develop-

ing procedures -for implementing -field modifications to be

carried out by the maintenance department.

Once the manufacturing and inspection procedures have

been determined, production proceeds. We will not attempt

to analyze this part of the process since it varies consid-

erably depending on what type of product is being produced.

For this discussion it is sufficient to assume simply that

as components are produced they are inspected for "correct-

ness" at several levels (e.g. parts, subassemblies, complete

machine) using the inspection criteria contained in the

design documentation. Rejected components are either dis-

carded or reworked until they can pass inspection.

D. MAINTENANCE/EVOLUTION

All man-made devices require some sort of maintenance.

Routine maintenance activities (e.g. periodic lubrication,

preventive maintenance) are specified in the design documen-

tation. Such things as "wear tolerances" are also specified

so maintenance personnel can detect when parts need replac-

ing. When a device begins to malfunction, repairs must be

made. In such cases the maintenance person must do some

"trouble-shooting" to locate the cause of the malfunction.

42

www.manaraa.com

His primary aids in this endeavor Are past experience and

the original design documentation.

In addition to making repairs and performing preventive

maintenance, maintenance personnel typically must report

the results o-f their activities. Reviews o-f maintenance

reports and customer complaints and comments often reveal

design deficiencies or identify needed enhancements. Once

identified, management must decide whether to pursue them.

If changes are to be made, the design process described

above is initiated and the engineering process continues

from that point with one additional input - the original

design documentation. That is, the design engineers go

"back to the drawing board" with copies of the current

design and make the necessary changes via the full design

process from problem formulation to the release of the

modified design for production.

E. MANAGEMENT

If left to his own devices, a good design engineer might

never complete a design. This is because engineers are

rarely satisfied with their own designs and can always see

some way to make them better. However, economic realities

restrict time and other resources to finite levels. Manage-

ment must determine these levels and then husband the

available resources to produce a profitable outcome.

43

www.manaraa.com

In CRef. 133, Reifer of TRH Systews states that

management has "-five constituent parts:"

(1

)

PI anni ng
(2) Controlling
(3) Staffing
(4) Organizing
(5) Directing

He goes on to state eighteen "fundamental principles of

management" which are reproduced in Appendix B. We will

mention a few of these in the next chapter. For now, we

will consider only the five management functions stated

above.

According to CRef . 133, "Planning is the primary

function of management . ..", and

Plans are either strategic or tactical. Strategic
plans identify major organizational objectives and govern
the acquisition, use, and disposition of resources to
achieve those objectives. Tactical plans deploy resources
to achieve strategic objectives. Plans help managers
decide in advance what will be done, how it will be done,
and who will do it.

Plans provide a standard against which progress can be

measured and communicate management's goals and expectations

to the organization.

Organizational structures are created by managers so

that people can work together effectively and efficiently to

achieve the desired goal. Once created, the organizational

structure must be staffed with personnel having the requi-

site skills and attitudes. When the staffing is completed,

44

www.manaraa.com

the manager must direct and lead the sta-f-f to the desired

goal .

Finally, there is the matter o-f control. No manager can

be effective i -f he cannot control his project. Maintaining

adequate control is just as essential as good planning. As

CRe-f. 133 puts it,

Planning and control Are inseparable activities. Un-
planned actions cannot be controlled because control in-
volves keeping events on course by correcting deviations
to plans. Plans -Furnish the standards for control. Con-
trols should be diagnostic, therapeutic, accurate, timely,
understandable, and economical. They should call atten-
tion to significant deviations and should suggest alterna-
tive means of correcting the difficulty.

One of the traditional ways to exercise control in

engineering is to require management approvals at several

points in the product's life cycle. During the design

process, design documents Are carefully reviewed, the costs

and benefits of various design alternatives Are carefully

estimated and compared, compromises are made and finally a

course of action is approved. This happens many times and

at many levels before the final design is released. Some

decision are "internal" to the company while others require

significant customer involvement. Similar things happen

during the implementation and maintenance/evolution phases.

The importance of the control function cannot be over-

emphasi zed.

45

www.manaraa.com

F. DESIGN DOCUMENTATION

1 • iDtrodyct^on

We have seen that design documentation is used in

all aspects of engineering. Because of its crucial impor-

tance to engineering methodologies, it deserves closer exam-

ination. We will now try to determine those -features which

contribute to its central role in the engineering process.

2- L§Y^ll 9f_ Abstraction

Engineering design documentation provides descrip-

tions o-f the product at many levels of abstraction. There

is a hierarchy of descriptions that vary in detail from the

general outline of the finished product down to the most

intimate details of the smallest component part. In mechan-

ical engineering, for example, there are "detail drawings"

of each unique part and various levels of "assembly draw-

ings" for the assemblies and subassemblies that make up the

final machine. As the assemblies become larger, their rep-

resentations must necessarily show only major features while

suppressing many details. However, sometimes a particular

feature is shown in great detail by superimposing a "magni-

fied view" on an otherwise high-level representation. This

demonstrates the property of "fine granularity" present in

engineering design documentation. Fine granularity may be

defined as the ability to simultaneously display different

levels of abstraction so that both the details of a feature

and the context in which that feature occurs may be shown.

46

www.manaraa.com

This ability to represent a complex device at vari-

ous levels o-f abstraction is the key to engineer's ability

to design complex devices that actually work. If the engi-

neer could not decompose a complex design problem into a set

o-f smaller and simpler design problems with corresponding

smaller and simpler implementations, modern technology sim-

ply would not be possible.

3. Iy.E®§ 9l Abstraction

There is o-f ten more than one conceptual view o-f a

product and its components. In electronics engineering, a

logic circuit can be viewed as a set of connected transis-

tors, capacitors, resistors, etc. It can also be viewed in

terms of logic gates (AND, OR, NAND, XQR, etc.) which are

represented by entirely different symbols from those used to

depict the electrical components. Even in mechanical engi-

neering we have "exploded views" of assemblies to illustrate

how the assembled parts relate to one another even though

the parts will never actually appear in the "exploded"

configuration.

4. Completeness

Taken as a whole, the design documentation provides

a complete specification from which the artifact may be

implemented. It specifies both the "perfect" artifact and

the types and degrees of imperfections that can be toler-

ated. Design documentation does not, however, specify how

47

www.manaraa.com

the implementation is to be accomplished. Different lmple-

mentors are -free to employ different methods to accomplish

the same end.

5. UQiyer sal i_t^

Design documents tend to be universally understood

by engineers in the same field (mechanical, electrical,

etc.) regardless o-f any differences among them including

national origin. That is, a mechanical engineer in the

United States can largely understand the design documen-

tation generated by a mechanical engineer in Japan even

though neither engineer has met the other or even under-

stands the other's native tongue. This is because engineer-

ing design documentation depends heavily on graphical repre-

sentations and the use of standard symbols and formats

accepted worldwide, which together form a more-or-less "uni-

versal design language".

6. High Cost

The generation of design documentation is an ex-

tremely expensive process. Often years of design effort Are

expended before the first component of the end product is

produced. The necessity of this large "design overhead" has

long been recognized and accepted by the engineering profes-

sion. This is because the investment is repaid many times

over in reduced communications costs throughout the pro-

duct's life. Without design documentation, the designer

would have to either perform all the engineering functions

48

www.manaraa.com

(design, implementation, maintenance, etc.) himself or

personally educate all those responsible -for non-design

activities.

7- A Valuable Asset

The three immediately preceeding characteristics

make the design documentation o-F its products one of the

most valuable and closely guarded assets of a company.

Because of their completeness and universality, design docu-

ments could be used by competitors to produce the same or

similar products. The expense of their development makes

them attractive targets of industrial espionage since even

their reproduction from an actual artifact is an extremely

expensive proposition.

G. CONCLUSION

We have looked at the general engineering methodology

used to design, implement, maintain and improve a product.

In so doing, Me found that a central and crucial role is

played by the design documentation produced by the design

engineers. In fact, the design documentation is essential

to all "engineering" aspects of the product life cycle

including the design process itself, the production of the

product, the maintenance of the product, the enhancement or

evolution of the product over time and the management of all

these activities.

49

www.manaraa.com

IV. SOFTWARE ENGINEERING ISSUES

A. INTRODUCTION

Be-fore we can call ourselves "software engineers" we

must subscribe to some software engineering methodology. We

have already described the general engineering methodology

in use today. However, this description lacks the detail

necessary -for actual practice.

In the last fifteen years, a number of software develop-

ment techniques have come into being but a complete engi-

neering methodology does not yet seem to exist. There are a

number of companies whose sole business is software genera-

tion for various customers and many others which develop

significant amounts of software "in-house" for their own

purposes. We could analyze the software-related activities

of these companies to determine their "software engineering

methodologies." In so doing, we would probably find that

most really have no well defined methodology. In other

words, if we were tasked with developing a software engi-

neering environment for any of these firms, we would face

all the same problems and difficulties we face when design-

ing software systems for other "unsophisticated" users. We

would have to listen to the customer's stated needs and

desires and then figure out how he really operates and what

J0

www.manaraa.com

he really needs and wants. We might even have to change his

way of doing business to enable him to meet his goals. In

short, we must know what we are trying to support be-fore we

can support it. This leads to the -following principle:

Methodol ogy Support Princi pi e

A software engineering environment should be designed to

support a specific engineering methodology.

The central position o-f the engineering methodology in

the "ecology o-f so-ftware development environments" and its

eight essential characteristics are given in CRef . 143.

These eight characteristics basically include -features

already identified here (in rough -form at least) but they

are included as Appendix C for easy reference.

An interactive software engineering environment must

address three basic classes of issues - (1) technical, (2)

managerial and (3) ergonomic. These are not strictly or-

thogonal because real environments have two fundamental

properties. First, "Everything is connected to everything

else" and, second, "There is no such thing as a free

lunch." Taken together, these characteristics imply that

altering one feature of an environment will have some effect

on the remainder of the environment. However, for discus-

sion purposes, we will treat technical, managerial and ergo-

nomic issues separately although we will see a good deal of

overlapping among them.

51

www.manaraa.com

B. TECHNICAL ISSUES

1 • Software Design Sugggr t.

When the word "engineering" is mentioned two things

immediately come to mind — technology and blueprints. Engi-

neers are people who design devices and structures which can

be implemented using current or -forseeable technology, and

who document these designs with engineering drawings (blue-

prints) and related materials. The importance of design

documentation to the engineering process and the essential

properties of this documentation were described in the pre-

vious chapter.

Let us now consider the term "software engineering".

Certainly we should associate "software engineering" with

"technology" since it is part of the computer industry which

is one of the most technologically advanced and rapidly

evolving industries on the planet. But where are the blue-

prints? What does a "software blueprint" look like? Just

how does one "design" a software system or even a part of

one? Given a "design", how can it be communicated to an

implementor? If there is a "key" to the software crisis, it

most likely will be found in the answers to these questions.

While there is no software design documentation

system that enjoys all the advantages possessed by those of

the other, more mature, engineering disciplines, there are a

a number of documentation techniques that have been pro-

posed. One of the oldest of these is flowcharting, which

52

www.manaraa.com

can be traced back to pre-FORTRAN days according to CRef.

153. Although it was widely used -for a time, -flowcharting

fell into disfavor for a number of reasons. It was regarded

as cumbersome because the time and effort required to con-

struct flowcharts was significant. Brooks CRef. 161 charac-

terized flowcharting as a, "... space—hoggi ng exercise in

drafting." Furthermore, since the software implementations

of the designs represented by flowcharts were more easily

altered than the flowcharts themselves, programmers tended

to modify the software without making corresponding changes

in the flowcharts. As Yourdon CRef. 173 observed, "...

flowcharts are rarely maintained with any enthusiasm after

the program has been finished." Hence, the implementation

soon deviated from the design and so the design documents

were discarded. (Yes, this is engineering heresy!)

There were other problems as well. Flowcharts rep-

resent only the flow of control through a program. This is

like having blueprints with only one view. Ledgard and

Chmura CRef. 181 argue, "... program flowcharts can easily

suppress much useful information in favor of highlighting

sequential control flow." Hence, many important features

cannot be seen clearly and some cannot be seen at all.

Another problem lay in the designs themselves. Be-

fore the advent of "structured programming", the control

structures in most programs could only be described as

"helter-skelter" - that is, no particular structure at all.

www.manaraa.com

Con-fused "designs" resulted in equally con-fused -flowcharts

and program code.

Perhaps the greatest problem was one which remains

to this day. There is no more significant indication o-f

so-ftware engineering's immaturity than the lack of separa-

tion between design and implementation activities. In the

preface to CRef. 193, Chu states, "The application of engi-

neering methods and practices to software development im-

plies (1) the separation of software design from software

implementation and (2) a software-blueprint interface be-

tween software design and software implementation." As long

as design and implementation remain inseparable, engineer-

ing in the modern sense cannot take place. This was the

most important reason flowcharts were largely abandoned.

Because the designer was also the implementor (programmer in

both cases), the making of flowcharts or other design docu-

mentation served no useful purpose in his view. As Yourdon

CRef. 17] also observed, "Indeed, most programmers will

admit that they rarely bother writing the flowchart until

the program has been finished (and then only because the

manager insisted on it)..." In other words, software is

often developed without any design documentation at all.

Other design documentation aids have been proposed

in the years since flowcharting was introduced. These in-

clude Nassi-Shneiderman Charts CRef. 20], HIPO (Hierarchy

plus Input-Process-Output) CRef. 213, PDL (Program Design

www.manaraa.com

Language) CRef. 22], Structure Charts LRef. 23], and the

"software blueprints" o-f [Ref. 19] as well as some others.

This last technique at least strives toward providing all

the essential characteristics o-f engineering design documen-

tation although it still lacks the richness and variety of

the more mature documentation systems. Chu's "software

blueprint" provides three levels o-f abstraction, four

processing data (as distinguished from control data) types,

seven processing data structures, two control data types,

two control data structures, a large number o-f high-level

data operators, seven reference structures (e.g. procedure

reference structure, data reference structure) , and some

other constructs (e.g. defined data types) as well. This

technique does not make extensive use of graphical

representations, although Chu allows that such representa-

tions could be usefully employed in conjunction with the

"software blueprint."

All of the above aids seem to have been used with at

least some success. Unfortunately, we do not have space

here to explore them in detail. For our present discussion,

the details are not that important. The important thing for

designers of software engineering environments to realize is

that some reasonably complete design documentation system

must be chosen before a software engineering environment

that supports software design may be developed. We state

the following principle:

www.manaraa.com

Design Doc aster) tat ion Principle

A software engineering environment should support a design

documentation system that is (1) complete, (2) capable o-f

representing appropriate levels and types o-f abstractions

with -fine granularity, (3) universal, and (4) economical.

Completeness and universality serve the same func-

tion in software engineering as in other engineering disci-

plines. They allow design to be largely divorced -from other

engineering activities while reducing the total communica-

tions burden over the product's life. Although universality

may seem an impossible goal at this early stage of software

engineering's development, we can begin by following the

example set by the other engineering disciplines. That is,

we need to develop graphical symbols and standard formats

for representing the various important features of a soft-

ware design. Flowcharts and hierarchy charts already can be

considered universal and adaptations to increase their util-

ity would be very valuable for this reason. Easily under-

stood graphical representations of certain common data

structures such as stacks, queues, and linked lists could be

developed without much difficulty. In short, the key to

universality lies in the consistent use of graphical repre-

sentations, formats (both graphical and textual), and sym-

bols that Are easily recognized even though only limited

standards for these currently exist.

56

www.manaraa.com

Abstractions also serve the same function as in

other disciplines but we will list a -few examples here to

show how they apply to software engineering. Programs can

be viewed in many ways and so several types of abstraction

are useful. The most obvious and familiar view is the

textual (program listing) one which is often "pretty print-

ed" to emphasize certain structures. (As design documents,

listings can at best be regarded as analogous to the "de-

tail" drawings of the mechanical engineer. It is probably

best think of listings as representing an implementation

rather than a design.) Flowcharts depict control flow,

hierarchy charts show the procedure reference structure,

data flow diagrams illustrate how and when data items are

modified, etc. The reader can no doubt think of several

other types of useful abstractions.

By having a design documentation system for represent-

ing the various aspects of a software design, we can analyze

the design to see if it satisfies various design criteria.

For example, if we can display all of the connections be-

tween modules, we can estimate levels of coupling. Me can,

like the drawing checkers mentioned in the previous chapter,

inspect the design for technical flaws, inconsistencies, and

adherence to design and documentation standards mandated by

management. This suggests the following principle:

57

www.manaraa.com

En forcement/Aid Principle

A software engineering environment should en-force tech-

nical correctness and conformance with management policies

while aiding the user in maintaining these standards.

It should be made clear that "technical correctness"

in this context does not necessarily mean "proof o-f correct-

ness" in the -formal sense. Although engineers o-f all disci-

plines use mathematical calculations in creating and check-

ing their designs, rarely if ever is the "correctness" of a

design confirmed by a formal mathematical proof. We are

more concerned here with such mundane things as ensuring

that the interface specifications between modules are con-

sistent or that the design does not call for the use of side

effects. Of course, where proofs of correctness can be

accomplished economically, they should be done.

There is an important corollary to the Enforcement/

Aid Principle. Designs change frequently while they are

being developed as well as less frequently after release.

Steps must be taken to ensure that changes to one part of a

design are accompanied by appropriate changes to the remain-

der of the design in order to maintain consistency. It is

altogether too easy to make a seemingly innocuous design

change that actually proves to have widespread ramifica-

tions. This leads to the

58

www.manaraa.com

Consistency Princi pie

"Permanent" alteration o-f one view of a design should not

be "accepted" by the environment until all related views

Are made to be consistent with the change.

Related views include all levels and types o-f abstraction

that show either the altered module or modules that inter-

face with it. "Permanent" and "accepted" are quoted to call

attention to the need for allowing temporary inconsistencies

so local evaluation of alternative design changes and envi-

ronmental transition states may be accomodated.

2. lOJBlsQJsntati^gn Sugggrt

It is difficult to say where design ends and imple-

mentation begins in software development. Here, we will

define impl ementation as that activity which transforms a

software design into an executable program or system of

programs. We will take executable to mean either directly

executable on the target hardware (machine code) or trans-

latable by automatic means to a form that is directly exe-

cutable. Thus, programming languages are considered dis-

tinct from design languages. This distinction is far from

being absolute, however. For example, Pascal could be used

as part of a design language system for specifying assembly

language programs to be created by hand if a compiler for

the target machine either did not exist or generated intol-

erably inefficient machine code. Another thing making the

59

www.manaraa.com

design/implementation boundary -fuzzy is that no matter how

complete the design, programmers Are always allowed some

leeway and so perform some detailed design -Functions.

There-fore, placement o-f the design/implementation boundary

will be a di-f-ficult chore -for the developers o-f software

engineering methodologies for the forseeable future,

a. Enforcement /Ai d and Consistency

Implementors face many of the same sorts of

problems as designers but in a different context. For

example, the Enforcement /Ai d and Consistency principles can

be applied to such things as ensuring consistency between

the implementation and the design, enforcing various pro-

gramming standards and policies, enforcing syntactic and

semantic rules of the programming language being used for

the implementation while aiding the programmer in conforming

to those rules, etc.

When applied to programming itself, the Enforce-

ment/Aid principle can be extremely powerful. It is, in

fact, the driving principle behind most modern interactive

"programming environments" including the Cornell Program

Synthesizer CRef. 24], the DWIM (Do What I Mean) feature of

Interlisp CRe-f. 25], and any syntax-directed editor. These

tools show that there is nothing sacred about having the

compiler perform enforcement functions. In fact, given

today's computing power and the prevalence of interactive

use, one could effectively argue that compilers should not

60

www.manaraa.com

be in the enforcement business at all but should handle only

the translation -function -from a -form that can be made human-

readable to a form suitable -for machine execution. Note the

possibility here o-f storing a program in an intermediate

"bidirectional" -form that could be "unparsed" into a textual

or other understandable -Form (one direction), or directly

translated into executable machine code (other direction) by

either an interpreter or a compiler.

The Enforcement/Aid principle can be used to de-

fine a completely new programming language or effectively

alter an existing one. For example, in CRef. 263, Kernighan

and PI auger describe RATFOR, a preprocessor for FORTRAN that

adds Pascal -like control structure constructors and charac-

ter manipulation to FORTRAN by translating these constructs

from RATFOR to FORTRAN which can then be translated into

machine code by the FORTRAN compiler. A syntax-directed

editor for RATFOR that restricted the use of the GO TO

statement (which RATFOR does not) could aid in the en-

forcement of structured programming techniques on FORTRAN

programmers, particularly if it was interactive (which

RATFOR is not) and provided templates (like the Cornell

Program Synthesizer) and other aids for program construc-

tion. It is easy to see how strong typing could, in es-

sence, be added to FORTRAN as well.

The Enforcement/Aid principle can also be used

to effectively create a subset of a language. In fact, the

61

www.manaraa.com

Cornell Program Synthesizer does precisely this for PL/I.

D-f particular interest in this regard will be the relation-

ship between Ada and various implementations of the APSE.

While DOD has decreed that it will allow no subsets of Ada,

it is difficult to see how this can be effectively pre-

vented. Ada's large size and complexity practically beg for

some sort of subsetting. As Hoare observes in CRef. 93,

It is not too late! I believe that by careful pruning
of the ADA language, it is still possible to select a very
powerful subset that would be reliable and efficient in
implementation and safe and economic in use. The sponsors
of the language have declared unequivocally, however, that
there shall be no subsets. This is the strangest paradox
of the whole strange project. If you want a language with
no subsets, you must make it small.

The APSE provides the mechanism for putting subsets into

effect from a programming standpoint even if no "incomplete"

versions of the Ada compiler are allowed,

b. Structure Manipulation

Those who perform any amount of word processing

^re familiar with the concepts of deleting and inserting

words, sentences, and paragraphs. Word processors a^re

organized around these structures because they are such an

intimate part of written prose in most western languages.

It seems clear, then, that software engineering environments

should provide programmers with the capability to manipulate

structures common to software development. An example of

this is the Cornell Program Synthesizer which provides for

62

www.manaraa.com

direct manipulation of structural elements in the PL/I

subset it_defines. "While" loops, " If -Then_El se" blocks,

expressions, etc., can be inserted or deleted as complete

entities. Furthermore, the cursor movements are keyed to

such structural elements rather than the textual elements of

lines and characters. This illustrates the

Structure Manipulation Princi pi

e

The user o-f a software engineering environment should be

able to create, reference, locate, alter and delete

structures defined within the environment. He should also

be able to display meaningful representations of them

within the context of any applicable type or level of

abstraction.

Note that although our examples apply to actual "source

code" generation, this principle applies to other activities

as well. For example, the programmer might wish to inter-

rupt his programming and view some part of the design docu-

mentation or consult the subroutine "librarian" to see if a

needed function has already been implemented,

c. Analysis Support

During the construction of a program or module,

the programmer will need to perform various analyses to

check his work, locate bugs, and ensure conformance with

standards and policies of his immediate supervisor. There

are two types of analysis - static and dynamic.

63

www.manaraa.com

In static analysis, the programmer checks the

static structure o-F the program -for various attributes. For

example, he might check a FORTRAN subroutine to ensure that

certain formal parameters did not appear on the le-ft o-f an

assignment operator 1 -f the design called for them to be used

for input only (like in parameters in Ada) or check an

entire program to ensure that no coercions are present. In

Pascal, he might want to ensure that a certain global vari-

able was referenced only in certain procedures. These exam-

ples lead us to the

Static final ysis Princi pi

e

A software engineering environment should (1) allow the

user to make assertions about the static structure of a

module, program, or system of programs and then report

back to the user which assertions a.re not valid and why,

and (2) allow the user to request certain information

about the static structure and then report this informa-

tion back to the user in a lucid format.

For example, if a user asserted that the actual parameters

used in calling a particular procedure never contained named

or literal constants, the environment should be able to

check for conformance with this assertion and, if exceptions

were found, provide the user with a 1 1 st of where the

offending procedure references were located. It should also

64

www.manaraa.com

be able to display these in any applicable context, high-

lighting iji some way the offending parameters themselves.

The Static Analysis principle is very similar to

the Enforcement /Ai d principle in many respects. The main

difference is that the Enforcement/Aid principle is more

concerned with general rules which all software generated by

an organization must obey. The Static Analysis principle

addresses features and characteristics peculiar to the spe-

cific program under development which is why the programmer

himself needs the ability to make assertions and have them

checked. Quality assurance persons can also use static

analysis to provide defense in depth (see principle 3 in

Appendix A)

.

The purpose of dynamic analysis is to study

program behavior. In order to be complete, a set of design

documentation must contain acceptance criteria. Some of

these may be static, others dynamic. When we speak of

"testing" and "correctness" regarding software, we are

usually thinking of the program's behavior. We may need to

know if a certain set of inputs produces the expected out-

puts, if procedures Are called in the expected sequence, the

frequency distribution of procedure calls for a typical

input stream, actual execution times, or similar facts con-

cerning the program's behavior. To support this need, we

state the following principle:

65

www.manaraa.com

Dynamic Analysis Principle

A software engineering environment should (1) allow the

user to make assertions about the dynamic structure o-f a

module, program, or system o-f programs and then report

back to the user which assertions are not valid and why,

and (2) allow the user to reguest certain i n-f ormat i on

about the dynamic structure and then report this informa-

tion back to the user in a lucid -format.

These last three principles strongly suggest that a

software engineering environment should provide many o-f the

same types o-f support we normally associate with database

and/or artificial intelligence applications. Certainly

database and artificial intelligence techniques should be

considered in the design of any software engineering

environment.

C. CONCLUSIONS

We have seen that before we can design an environment to

support a software engineering methodology, we must first

define that methodology. We have also seen that design

documentation is just as essential to software engineering

as it is to the other engineering disciplines although no

system of design documentation presently exists that has all

the fundamental characteristics of those associated with the

wore mature disciplines. The idea that software developers

seem to have been so busy building systems to increase the

66

www.manaraa.com

productivity o-f others that they haven't yet performed that

service -for themselves has been observed. Finally, we saw

indications that during design and implementation a signifi-

cant "knowledge base" is built up and that the techniques of

database management and artificial intelligence might be

brought to bear in a productive manner.

67

www.manaraa.com

V. MANAGERIAL ISSUES

If the design and implementation of reliable, effective

software are not well understood, then the management of

projects which have such responsibilities must be a total

mystery. In CRef. 3], Tonies observes.

If management science is immature, then we can expect
software management science to be especially immature,
since the software industry is itself so new and is
expanding so quickly. The probability, then, of finding
effective software management would seem to be small. It
i s.

We cannot hope to treat this immensely important topic

adequately here. However, we will point out some issues

which could be addressed by a software engineering environ-

ment. In particular we will look briefly at the pi anning

and control functions of management.

In CRef. 273, Thayer, Pyster and Wood report the results

of a survey of "... experienced and knowledgeable data

processing managers as well as some of the leading computer

scientists from industry, government, and universities with-

in the US and abroad." In this survey, "...participants

were asked to express their opinions concerning 20 hypothe-

sized major issues or problems of SEPM. " SEPM is an ab-

breviation for Software Engineering Project Management. The

20 hypothesized problems are reproduced in Appendix D.

68

www.manaraa.com

Eight o-f the ten hypothetical planning issues, three o-f the

six control issues, organizational accountability, and the

staffing o-f the project manager position were all considered

definite problems. None o-f the 20 issues could be elimi-

nated as a unimportant.

A. PLANNING

Planning requires estimation and estimation presupposes

the existence o-f some system o-f measurement. So far,

researchers have had a very difficult time in their attempts

to develop meaningful measurements of software. In CRef.

281, a number of papers on software metrics have been col-

lected. In their preface, Perl is, Sayward and Shaw note

that, "No matter what aspect of software one studies, there

is a noticeable lack of collected and categoried field data

on which to build." They continue, "... past software

projects have rarely integrated data collection into their

production schedule ..." When this is combined with

DeMarco's assertion in CRef. 293 that software managers are

such poor estimators because they don't collect data on

project performance and compare it with the actual results

in even the most trivial manner so they can learn from their

mistakes, we see that the need for data collection is a

universal one. Ironically, there are few situations where

large-scale data collection would be easier than in a soft-

ware development project, where most of the work is done on

69

www.manaraa.com

one or a -few computers. Even if we don't have a well estab-

lished set o-f metrics, almost any data collected would be

useful to the collecting organization in making future esti-

mates as well as being more grist for the research mill. We

don't have space here to discuss exactly what kinds of

project data might be collected but we can state the fol-

lowing principle:

Data Col 1 ection Princi pi

e

A software engineering environment should provide -for the

unobtrusive collection o-f software management data.

In addition to the collection of general management

data, one specific class o-f data should be collected for

each software product developed. Enough data should be

collected to establish a complete set of audit trails. It

should be possible to follow, after the fact, a software

development project from beginning to end through its

residual dccumentat i on . For example, an "auditor" should be

able to find the alternative designs considered and the

rationale used for choosing the one that was actually used.

He should be able to find out who made a major design deci-

sion, who implemented a particular module, who tested and

accepted it, the test specifications and actual test re-

sults, the costs of these activities, and other such useful

information. Such things Are not only useful for general

planning purposes, they are also valuable to those who may

70

www.manaraa.com

be tasked with designing enhancements or alterations to a

particular system and they Are essential to any system of

con-figuration management. We state the following principle:

Audit Trail Principle

A software engineering environment should maintain audit

trails showing the relationships between specifications,

designs, implementations, maintenance and enhancements,

and the resources expended in these activities. Further,

such audit trails should be navigable in both directions

from any point.

Another service which the environment should provide is

that of librarian. Software engineering efforts a.r&

notorious for "reinventing the wheel," that is, failing to

effectively use the knowledge gained from or output of

previous efforts. If the results of earlier work were

organized and cataloged, managers could find at least some

data to guide their estimates. Technical personnel could

likewise locate and study designs or implementations which

might be applicable to the problem at hand. It is often

more efficient to use or combine existing products or

designs than to create a totally new product. We therefore

state the following:

www.manaraa.com

In format ion Organ i zat 1 on Principle

The information gleaned -from the various documentation and

data collection e-f -forts should be organized -for easy

reference and maintenance.

B. CONTROL

Chapter 1 of CRef. 293 begins with the statement, "You

can't control what you can't measure." Ule submit that it is

even more difficult to control what you can't even see.

Many software managers must feel like the fabled emperor who

wanted some new clothes. When they ask for software project

progress reports, the one thing they rarely see is the

software or its design. The control issue is the main

reason why design documentation is so important to

management

.

We saw earlier how the Enforcement/Aid principle applied

to designers and i mpl ementors. Recall that this principle

involved ensuring "conformance with management policies."

In order to cairry out this function, the following principle

should be applied:

Management Control Principle

A software engineering environment must be controllable by

the management of the organization it serves.

72

www.manaraa.com

C. ORGAN I ZAT ION

Organizational structures are developed so that a varie-

ty o-f persons with expertise in a variety o-f needed disci-

plines or specialties can work together effectively and

e-f -f i ci ent 1 y to achieve a common goal. The computer support

•for an organizational structure should reflect that struc-

ture. This leads to the

Organ 2 zational Structure Princi pie

A software engineering environment should be parti ti onabl

e

along the structural lines of the organization so that

individuals and groups may have the necessary levels of

privacy and isolation from other individuals and groups,

and so the communications among them may be reasonably

controlled by forcing them through established interfaces.

However, it should also be possible to allow information

to flow across organizational boundaries, when needed,

through specially designated and controlled interfaces.

This is really an application of the Information Hiding and

Manifest Interface principles (numbers 4 and 7 respectively

in Appendix A) and the Management Control principle (above)

to human organizational structures.

D. CONCLUSIONS

In this brief chapter we have tried to emphasize the

importance of management to software engineering, but

73

www.manaraa.com

without delving into the various details and styles o-f

management. The principles we have outlined a.re very broad

and deal only with automated support o-f management func-

tions. No doubt anv practicing so-ftware manager could think

o-f a host o-f additional -features and tools he would like to

see in a so-ftware engineering environment. The one concept

that should be clear at this point is that designers o-f

so-ftware engineering environments should not be satis-fied

with supporting only the technical personnel. The solving

o-f management problems is just as important to the goal o-f

increased so-ftware productivity as the solution o-f technical

problems. However, so-ftware management problems Are much

more di-f-ficult to solve and are often not regarded as being

within the realm of "computer science."

74

www.manaraa.com

VI. iRGONOMIC ISSUES

A. INTRODUCTION

So far we have looked at some o-f the engineering and

managerial issues involved in software engineering environ-

ment design. We will now look at some ergonomic issues.

That is, we want to examine the interface between the human

user and the automated environment in which he will (we

hope) immerse himself.

Many of the principles stated up to this point have

ergonomic overtones and some, like the Structure

Manipulation principle, could even stand as ergonomic

principles alone. We wish to continue with a list of

principles which apply to the design of an y interactive

application. Before going on, however, we wish to take time

to emphasize the need for good ergonomic features.

The first and foremost reason for good ergonomics is

that tools which are difficult or awkward to use will be

ignored. A similar fate awaits tools which are unpredict-

able or unresponsive. To employ a greatly overworked

phrase, the tools must be "user friendly." The second

reason is that the investment required to bring an

"unfriendly" tool on-line is probably not much less than

that required for a similar "friendly" tool. We shouldn't

www.manaraa.com

waste money on tools that will be discarded. A third reason

is productivity. Even if designers and programmers must

work with the given tools because no others are available,

they will be much more productive with "-friendly" tools.

We have been speaking here o-f "tools" as if we were

going to supply them in a "toolkit." We actually wish to

avoid such a concept. Obviously a so-ftware engineering

environment must put tools (capabilities) into the hands of

its users. However, it will not do to have a toolkit of

miscellaneous devices, however useful, that do not work

together in harmony. This makes the environment as a whole

"unfriendly." Nevertheless, this is how most of the present

environments have come about. (Smalltalk is a notable ex-

ception.) To guote Spier et al . CRef. 303, "Generally,

tools sprang into spontaneous existence as desperate pro-

grammers resorted to improvisation; such improvisations are

colloquially termed 'midnight projects'." This is certainly

how the tools of UNIX originated although it is claimed by

Kernighan and Mashey CRef. 313 that the system was built up

by evolutionary means (survival of the fittest tools) which

achieved a reasonable degree of integration. Nevertheless,

they also note in CRef. 313 that things could be better in

this regard.

In CRef. 321, Hansen lists a number of principles for

the design of interactive systems. We will examine these

briefly in the sections that follow and add a few as well.

76

www.manaraa.com

B. USER ENGINEERING PRINCIPLES

The user will need to communicate with the environment

via some "language o-f interaction." It is clear that such a

language should be designed in accordance with the

principles o-f language design -formulated in CRe-f. 51 and

reproduced here as Appendix A. This leads to our first

pr incipl e:

Interface Language Design Principle

The language o-f interaction between a user and an

interactive application should be designed according to

the principles o-f good programming language design.

The -first principle listed in CRe-f. 323 is "Know the

User". This principle is seen as having two parts. First,

Hansen suggests building, "... a pro-file o-f the intended

user: his education, experience, interest, how much time he

has, his manual dexterity, the special requirements o-f his

problem, his reaction to the behavior o-f the system, his

patience." Second, and more important, is the need -for the

designer to appreciate two traits common among humans: "...

they forget and they make mistakes."

While the second assertion is well beyond dispute, the

need -for a detailed user pro-file is highly questionable. In

the -first place, humans are highly variable beings and in

the second place, most o-f the characteristics listed above

77

www.manaraa.com

will change over time. Therefore, rather than having the

designer tailor the system to a particular type of user, he

should, at most, discriminate only among broad classes of

users, e.g. professionals vs. amateurs. In any case, he

should make the system flexible enough to allow users to

"customize" the interface to their own liking. The old

engineering adage, "If you can't make it right, make it

adjustable" applies.

In the sections that follow, we will follow Hansen's

outline and comment on his principles.

1 • "yiDi!Bi^§ Memorization"

The first principle listed in this category is that

of "Selection Not Entry." Here, Hansen recommends selecting

items from menus via keyboard codes. While this certainly

has advantages for novice users, menus can quickly become

frustrating for experts. The word processor on which this

document was produced provided multiple levels of inter-

action. First, it allowed selection of a "help level" to

determine how much command information was displayed con-

tinuously. Second, for multi-stroke commands, rapid typing

of the keystrokes resulted in immediate execution of the

commands while a delay following the first keystroke caused

a menu of second-stroke commands to be displayed. In other

words, it minimized the level of requi red aemorization while

allowing the user to take advantage of the increasing level

of expertise he gained naturally through experience. In

78

www.manaraa.com

CRef. 303, Spier et al . recommend, "at least two modes o-f

inter-face: 'novice' mode and 'expert' mode; preferably

more." This leads to the

Multi-level Help Pr inc i pi

e

For any interactive tool, there should be a hierarchy of

"help" levels ranging from no prompts at all to on-line

instruction. Furthermore, within an environment, the user

should be able to set the "help level" on a tool -by-tool

basis (fine granularity o-f help levels).

As an example, suppose a user wanted to use a PL/

I

"while" loop in a program. He could first ask for a tem-

plate. The system might then want to know which form of the

"while" loop was desired and display a list of short but

descriptive names. If this wasn't enough, the user could

ask to have the alternative templates themselves displayed

and if he still couldn't make up his mind, he could ask for

detailed instruction on the characteristics and typical uses

of the different types of "while" loops. Such a system

would provide for all levels of expertise while penalizing

no one. (Note the incorporation of the Localized Cost

principle of CRef. 53 here.)

The second principle in this category is that of

using "Names Not Numbers". This is almost identical to the

Labeling principle of CRef. 53. Hansen does, however, pro-

vide the additional recommendation that a dictionary of

79

www.manaraa.com

names (labels) be maintained by the environment on-line so

they can be easily referenced to re-fresh the user's memory.

The third principle is that of "Predictable Behav-

ior". Although Hansen provides no precise definition, his

concerns appear to fall mainly within the realm of the

Regularity, Simplicity and Syntactic Consistency principles

of CRef. 53. Certainly, unpredictable behavior cannot be

tolerated since a user would quickly become frustrated.

The last principle listed by Hansen in this category

is that of "Access To System Information." Here, he seems

to be discussing the need for a user to have at least par-

tial control over his interface with the environment. This

need is captured in the following principle:

Configurability Princi pi

e

The user should be able to configure his interface to the

environment (tool) within the constraints mandated by

higher management. This capability should display a fine

granul ar i ty.

For example, in order to support the organizational

goals of a software development organization, the various

levels of management must be able to reserve the alteration

of environmental features according to organizational poli-

cies. Those features not reserved to management should be

accessible to the end user so that he may tailor the

remainder of the environment to his own liking. One example

80

www.manaraa.com

of such "tailoring" was given earlier in connection with

setting "help" levels.

2- "Qgtimize Q£§C*tigns^

The -first o-f Hansen's principles in this category

is, "Rapid Execution 0-f Common Operations." Efficient exe-

cution o-f frequently used commands is needed to reduce user

frustration and make effective use of system resources.

Less frequently used functions or ones that involve so much

work they cannot be made to appear instantaneous will take

longer but should, nevertheless, give the user some positive

feedback while they are in progress. We capture these ideas

in the following three related principles:

Meaningful Response Principle

The appearance of the display and the text of messages in

response to user actions must be appropriate to those

act i ons.

Rapid Response Princi pie

Simple and frequently used functions should have an

immediate (in terms of human reflexes) effect upon the

di splay.

Status Reporting Princi pi

e

Lengthy functions should periodically update the display

to assure the user that progress is being made in carrying

out the requested function.

81

www.manaraa.com

The second principle given by Hansen in this category

involves "Display Inertia". It mav be stated as follows:

U 2 s pi av Inertia Principle

The display should change by the least amount possible in

response to a user action. The display should not, how-

ever, violate the Meaningful Response principle.

The third o-f his principles involves what Hansen

calls "Muscle Memory". He notes that repetitive operations

like typing Are relegated to the lower part o-f the brain and

there-fore different tools should use similar keystrokes to

perform similar functions. For example, the "escape" key

should not be used as an "emergency exit" to return one tool

to some "base state" while another tool in the same environ-

ment uses the "escape" character as a special kind of de-

limiter. This author, like anyone else who has used a

variety of similar interactive tools (e.g. text editors) on

a variety of systems, has found the lack of standardization

of commands and key assignments to be extremely frustrating

when the same small number of basic functions are being

performed.

Another important aspect mentioned by Hansen is

"burst mode input." He notes that interactive users tend to

type in short bursts sometimes exceeding 100 words per

minute. While it is not essential that the system be able

to respond to commands at this rate, it is essential that it

82

www.manaraa.com

be able to reliably accept both commands and data at what-

ever rate they are being typed.

The last principle Hansen mentions in this section

involves being prepared to "Reorganize Command Parameters".

His main concern here is in being able to adjust the user

interface to reflect the lessons learned through actual

experience. The most powerful way to do this is to put the

necessary adjustments in the hands of the user himself. We

have already mentioned the Configurability principle in this

regard. Since we can't possibly expect to anticipate all of

a user's needs, we should also seek to make the environment

extendable within certain constraints. That is, we should

give the user the opportunity to create and use some of his

own "private tools" CRef. 303 and commands. For example,

some operating systems have "command files" where commonly

used command seguences can be placed by a user and invoked

as a single command. We state the following principle:

Extensibility Princi pie

An environment should be extensible in the sense that it

must be possible to add tools at any time and at any level

which enjoy the same level of control and integration as

the original tools.

The combined effects of configurability and extensibility

effectively remove the need for the detailed user profiles

mentioned earlier.

S3

www.manaraa.com

3- "^QQiG^C f.9C ^CC9C§11

As noted earlier, humans are error prone. Hansen's

-first principle in this section is the provision of "Good

Error Messages." We consider this as being included in the

Meaning-ful Response principle since the correct response to

an erroneous input is a good error message.

Hansen's next principle is worthy of its own place

in the sun, however. He states it as, "The System Must

Provide Reversible Actions." We state it as follows:

Revers ibil ity Princi pi

e

Any action taken by a user must be reversible for some

period of time or number of subsequent actions.

Reversibility is one of the most important ergonomic

principles. Because humans are so error-prone, they tend to

take actions which they later need to reverse or "undo." No

one would expect a user to be happy if, after spending 30

minutes composing a paragraph, he then struck the "delete

paragraph" key when he meant to strike the "delete word" key

and found he could not recover from his error except by

retyping the entire paragraph.

The Cornell Program Synthesizer CRef. 243 carries

reversibility one step further - "reverse execution" of a

program in support of debugging activities. As described in

CRef. 243, "... the forward execution interpreter maintains

a history file of the flow control and the values destroyed

34

www.manaraa.com

by assignments to variables. The reverse execution inter-

preter restores values and updates the screen to give the

illusion o-f the program executing backwards."

4- "Perception Aids"

This category comes -from CRef. 303. There, Spier et

al . describe the "windows" concept which has come into

recent popularity through the work on Smalltalk CRe-f. 333

and some recent personal computer products (e.g. Apple Com-

puter's Lisa and Macintosh systems, and Microsoft's Windows)

Windows basically provide a mechanism for easy context

switching by the user without the irretrievable loss of

previous contexts. As pointed out in CRef. 303, "It should

be trivial to interrupt an activity, embark upon another

(which is similarly interruptable) , and later resume the

first activity." The ability to display multiple windows

simultaneously (though some may be partially hidden) gives

the user interface a fine granularity.

Spier et al . also advocate the use of high resolu-

tion color graphics to enhance user perception. Graphics

have application throughout the software engineering process

and a.re often a much more effective communications medium

than even the most imaginatively formated text. The promi-

nence of graphical representation in the design documenta-

tion systems of the other, older engineering disciplines is

no accident.

85

www.manaraa.com

C. CONCLUSIONS

In the preceeding paragraphs we have tried to stress the

importance o-f having a well engineered user inter-face to any

interactive application. We then listed a number of impor-

tant principles for the design o-f user inter-faces. The list

was by no means exhaustive but it did point out a number of

often overlooked but important issues. The most important

conclusion to draw is that a tool which is difficult or

awkward to use will not be used if an alternative exists,

and will be used inefficiently at best even if there is no

al ternati ve.

86

www.manaraa.com

VII. CONCLUSIONS AND RECOMMENDATIONS

A. SOFTWARE DEVELOPMENT AS "ENGINEERING"

When software is compared with other complex artifacts

which are "engineered" rather than "crafted" we find many

more similarities than differences. In spite of this, soft-

ware development is still more of a craft than an engineer-

ing discipline- Although this situation may be understand-

able given software engineering's youth, it is nonetheless

important to speed its maturation as much as possible.

The similarities software artifacts share with other

products of an engineering development process include a

high degree of complexity, a requirement for a reasonably

long useful life of continuous, reliable operation, the need

for alteration, enhancement and, in a sense, "repair" during

its life, a requirement that it be serviceable by people not

intimately involved with its original development, and a

requirement that it be operable by persons who are ignorant

of its internal structure and operation. While software has

no moving parts to wear out, neither, in most cases, to

solid state electronic circuits. However, like an elec-

tronic circuit, software may be released with flaws that are

not immediately apparent and, when these manifest

themselves, "repair" or replacement is in order.

87

www.manaraa.com

Software is diHerent -from other artifacts in that its

implementation is not a physical object. This is really the

only significant difference and its main impact is to

require that a little extra imagination be used to represent

software designs.

As implied by the first paragraph, software engineering

is quite different from the methods of the more mature

engineering disciplines. In fact, it is questionable at

this time whether a software engineering discipline can be

said to exist. The most obvious difference seems to be the

lack of a complete and universal software design documenta-

tion technology. This failing seems to be at once a symptom

and a cause of a significant difference in the way engineer-

ing project resources are employed. In all the older engi-

neering disciplines, design and implementation are separate

activities usually carried out by separate groups of people

who communicate mainly via the design documentation (e.g.

blueprints). In software "engineering" design and imple-

mentation are still inseparable activities, and it is for

this reason that software development remains a "craft."

Design documentation is also needed to communicate from

the designer to maintenance personnel, operators and later

designers a wealth of needed information. Without design

documentation, the burden of communicating this information

to all those with a "need to know" would be unmanageable.

38

www.manaraa.com

It is a strange paradox that Brooks CRef. 163 decries

•flowcharting as a "space hogging exercise in drafting" ^hila

at the same time observing that adding people to a late

software project only serves to make it later because the

communications burden of bringing the new people "up to

speed" exceeds the amount of useful work they can do. This

is not to say that flowcharting is an adequate means of

documenting a software design. Rather, it serves to point

out the reluctance of software developers to expend the

considerable effort required to develop any reasonable

amount of design documentation. This reluctance stands in

stark contrast to the other engineering disciplines. A

recent radio commercial announcement for a new model of

automobile points this out admirably. In the announcement,

it was claimed that the manufacturer had spent over five

years and over a billion dollars in design effort on that

particular model before it went into production. Thus, even

in such a well established sub-field of engineering as auto-

motive design, vast amounts of design effort are expended

routinely, and much of this is spent developing the neces-

sary design documentation. Software development has no

analogy in this regard and until it does it cannot truly be

called "engineering."

89

www.manaraa.com

B. SOFTWARE ENGINEER I NG ENVIRONMENTS

We can increase the rate of maturation from software

development as a craft to software development as an engi-

neering discipline by designing (with whatever dssign tools

we have at hand), developing and implementing software engi-

neering environments that support an analog of the general

engineering process as adapted to software development. The

knowledge gained from this work will suggest many more

improvements in the way we produce software, while at the

same time improving software productivity in general by

making many useful tools available. So far, the reluctance

of the software industry to engage in this activity seems

paradox i cal

.

While basic research on programming languages in general

should continue, there is probably no need for further

efforts with respect to imperative languages. This is be-

cause we can effectively control, through the environment,

most of the language's characteristics which are apparent to

the programmer. If increases in productivity and quality

ara truly our goals, then, at this point, the most naive

efforts at software engineering environment design probably

hold more promise, in the short term, than the most sophis-

ticated research on programming language design.

90

www.manaraa.com

C. FUTURE WORK

Clearly the most critical AreA -for -future efforts is in

the area o-f software design documentation. Design and its

associated documentation techniques are crucial to the

operation of all engineering processes. Unf or tunatel v, the

needed research probably doesn't hold much glory for the

academician. Certainly the design documentation systems of

engineering in general were not the result of such research

(although some may have been by-products of academic inqui-

ries), but evolved more or less naturally over a long period

of time. This will eventually occur with software as well.

The problem is that many do not believe we can afford the

luxury of such "natural evolution" in the face of what they

term the "software crisis."

In particular, we need to find more ways of employing

graphics in software design documentation. Pictures can

often communicate more information in less space. They also

tend to be more universally understood than textual or

spoken languages. Furthermore, graphics display devices and

a reasonable amount of general purpose software to support

them has fallen into the realm of af f ordabi 1 i ty . This means

that much of the "drafting" burden can be automated. In

fact, there is already a trend in the more established

engineering disciplines toward "computer aided drafting."

Another AreA requiring further research is software

management. Software management is in an even more immature

91

www.manaraa.com

state than software engineering in general. So -far we don't

Lnow how to estimate the cost, time, or complexity of devel-

oping a piece o-f software. Furthermore, we don't know how

to measure the result o-f a project for a meaningful compari-

son with the original (probably meaningless) estimates and,

worse than that, we usual 1 / don't even try. At least a well

designed software engineering environment would allow for

the collection of project data which, when analyzed, might

yield some insight into the management problem.

D. CONCLUSIONS

Software engineering is still very immature as an engi-

neering discipline. Before significant further maturation

can take place, work must begin on establishing a design

documentation system that shares the essential characteris-

tics of other engineering design documentation systems.

Software engineering environments with a well integrated set

of useful tools for aiding design, implementation, quality

assurance, maintenance and enhancement, and management of

software hold much more promise for increased software pro-

ductivity and quality than the traditional approach which

has restricted itself to programming language design.

92

www.manaraa.com

APPENDIX A

(After MacLennan LRef. 53)

1. Abstract 2 on". Avoid requiring something to be stated
more than once; -Factor cut the recurring pattern.

2. Automation: Automate mechanical, tedious, or error-
prone activities.

3. Defense-in-Depth: HaiS/e a series o-f de-fenses so that if
an error isn't caught by one, it will probably be caught
by another.

4. Information Hiding'. The language should permit modules
designed so that (1) the user has all o-f the information
needed to use the module correctly, and nothing more!
(2) the implementor has all of the information needed to
implement the module correctly, and nothing more.

5. Label ing: Avoid arbitrary sequences more than a few
items long; do not require the user to know the absolute
position of an item in a list. Instead, associate a
meaningful label with each item and allow the items to
occur in any order.

6. Local i zed Cost! Users should only pay for what they
use; avoid distributed costs.

7. Man i fest Interface! All interfaces should be apparent
(manifest) in the syntax.

8. Orthogonality'. Independent functions should be control-
led by independent mechanisms.

9. Portabi 1 ity'. Avoid features or facilities that 3.rs

dependent on a particular machine or a small class of
machines.

10. Preservation of In format ion'. The language should allow
the representation of information that the user might
know and that the compiler might need.

93

www.manaraa.com

11. Regularity'. Regular rules. without exceptions, are
easier to learn, use, describe, and implement.

12. Security". No program that violates the definition cf
the language, or its own intended structure, should
escape detection.

13. Simplicity'. A language should be as simple as possible.
There should be a minimum number of concepts with simple
rules -for their combination.

14. Structure: The static structure o-f the program should
correspond in a simple way with the dynamic structure
o-f the corresponding computations.

15. Syntactic Cons i stencyl Similar things should look simi-
lar; different things different.

16. Zero-One- In f inity'. The only reasonable numbers are
zero, one, and infinity.

94

www.manaraa.com

APPENDIX B

Vinci^gl^es of Software Management
(After Riefer CRef. 13])

Principle 1' The Precedence Pr inc i pi e . Planning logically
takes precedence over all other managerial -functions.

Principle 2' The Effective PI ann ing Principle. Plans will
be effective i -f they are consistent with the organization's
policy and strategy framework.

Principle 3' The Living Document Principle. Plans must be
maintained as living documents or they quickly lose their
value. Plans serve as the -foundation -for control. When
they are not updated, control is severely impeded.

Principle 4' The Early Assignment Principle. Make one
person responsible for software as early in the life of the
project as possible. Ensure that he or she occupies a high
enough position within the hierarchy to successfully compete
for resources (dollars, people, etc.). Make this person
accountable for the final results.

Principle 5i The Interface Princi pie . The efficiency of an
organization is inversely proportionate to the number of
interfaces it has to maintain during the performance of a
job.

Principle 6' The Parity Principle. A software manager's
responsibility for action should be no greater than that
implied by the authority delegated to him.

Princi pie 7' The Quality Princi pie . Using a few experi-
enced people for critical tasks (such as design) is often
more effective than using larger, unskilled teams. An
experienced software engineer is "worth his weight in gold."

Principle 3' The Personnel Development Principle. An open
commitment to personnel development often pays dividends.
Better trained technical and managerial personnel can ef-
fectively cope with tomorrow's problems instead of today's.

95

www.manaraa.com

Principle 9z The Dual Ladder Principle. Promotion should
be possible up either a technical or a managerial career
path.

Pr inc i pi e 10- The Mot i vat i on Principle. Interesting work
and the opportunity for growth and advancement will motivate
people to achieve high productivity. McGregor's Theory Y
holds - the individual will rise to the challenge of his
capabi 1 1 t 1 es.

Principle 11' The Leadershi p Principle. People will fellow
those who represent a means of satisfying their own personal
goals. Success will come to those who ensure that personal
goals Are compatible with those of the organization.

Principle 12' The Communications Principle. Productivity
is a function of the communications burden. As the burden
increases, productivity decreases. In other words, the less
communication required, the higher the productivity.

Principle 13' The Signi ficance Princi pie. Controls should
be implemented to alert managers promptly to significant
deviations from plans.

Princi pi e 14" The Measurement Principle. Effective control
requires that we measure progress against objective, ac-
curate, and meaningful standards.

Princi pie 15' The Exception Princi pi e

.

The efficient
manager will concentrate his control efforts on exceptions.

Principle 16* The Technology Risk Princi pie. Technology
should be used only when the risk associated with it is
acceptabl e.

Principle 17' The Improvement Pr inc i pi e . The manager who
insists on doing things the wav they have always been done
will fail. New approaches must be used to meet new chal-
lenges. Your competition will not allow you to remain
conservative in the extreme.

Princi pie IS* The Peter Princi pie of Software Management

.

Managers rise to their level of incompetence and are then
transferred to head a software development project.

96

www.manaraa.com

APPENDIX C

Characteristics of a Methodology
(After Wasserman CRef. 14])

1. The methodology should cover the entire software devel-
opment cycle.

2. The methodology should facilitate transitions between
phases of the development cycle.

3. The methodology must support determination of system
correctness throughout the development cycle.

4. The methodology must support the software development
organi ration

.

5. The methodology must be repeatable for a large class of
software projects.

6. The methodology must be teachable.

7. The methodology must be supported by automated tools
that improve the productivity of both the individual
developer and the development team.

8. The methodology should support the eventual evolution of
the svstem.

97

www.manaraa.com

APPENDIX D

Iy§Qty t!yB9th§5i2ed Problems ^n 3EPM
(After Thayer, Pyster, and Wood CRef. 273)

Pl^ann^ng

1. Requi rements- Requirement speci f i cat ions are
-frequently incomplete, ambiguous, inconsistent and/or
unmeasurabl e.

2. Success- Success criteria for a software develop-
ment Are frequently inappropriate, which result in "poor-
quality" delivered software; i.e., not maintainable, un-
reliable, difficult to use, relatively undocumented, etc.

3. Pro Je-cti Planning for software engineering projects
is generally poor.

4. Cost' The ability to estimate accurately the re-
sources required to accomplish a software development is
poor .

5. Schedul ei The ability to estimate accurately the
delivery time on a software development is poor.

6. Designi Decision rules for use in selecting the
correct software design techniques, equipment, and aids to
be used in designing software in a software engineering
project are not available.

7. Test' Decision rules for use in selecting the
correct procedures, strategies, and tools to be used in
testing software developed in a software engineering project
are not available.

S. Mdti n ta i nabi 1 i t v Procedures, techniques, and strat-
egies for designing maintainable software are not available.

9. Harrantyi Methods to guarantee or warranty that the
delivered software will "work" for the user Are not
avai 1 abl e.

10. Control ' Procedures, methods, and techniques for
designing a project control system that will enable project
managers to successfully control their project Are not
readily available.

98

www.manaraa.com

5C9§Qi5.iQ9

11. Type'- Decision rules for selecting the proper
organizational structure; e.g., project, matrix, -function,
are not available.

12. Flccountabi 1 ityi The accountability structure in
many software engineering projects is poor, leaving seme
question as to who is responsible for various project
f unct i ons.

Staffing

13. Project Manager'. Procedures and techniques for the
selection of project managers are poor.

Di^recti^ng

14. Techn i quest Decision rules for use in selecting
the correct management techniques for software engineering
project management are not available.

Controlling

15. Visibility^ Procedures, techniques, strategies,
and aids that will provide visibility of progress (not just
resources used) to the project manager are not available.

16. Reliability'- Measurements or indexes of reliabil-
ity that can be used as an element of software design are
not available and there is no way to predict software fail-
ure? i.e., there is no practical way to show the delivered
software meets a given reliability criteria.

17. Maintamabi 1 ity' Measurements or indexes of main-
tainability that can be used as an element of software
design are not available; i.e., there is no practical way to
show that a given program is more maintainable than another.

18. Goodness: Measurements or indexes of "goodness" of
code that can be uses as an element of software design are
not available; i.e., there is no practical way to show that
one program is better than another.

19. Programmers! Standards and techniques for measur-
ing the quality of performance and the quantity of produc-
tion expected from programmers and data processing analysts
are not available.

99

www.manaraa.com

20. Tracing' Techniques and aids that provide an

acceptable means o-f tracing a software development from
requirements to completed code are not generally available.

100

www.manaraa.com

APPENDIX E

Princ^g_l_es of Software Engineering Environment Design

Methodol og y Support! A software engineering environment
should be designed to support a specific engineering
methodol ogy

.

Design Docuaentat ion'. A software engineering environ-
ment should support a design documentation system that
is (1) complete, (2) capable of representing appropriate
levels and types of abstractions with fine granularity,
(3) universal, and (4) economical.

Enforcement/ Aid'. A software engineering environment
should enforce technical correctness and conformance
with management policies while aiding the user in
maintaining these standards.

Consistency Principle'. "Permanent" alteration of one
view of a design should not be "accepted" by the envi-
ronment until all related views are made to be
consistent with the change.

Structure Manipulation'. The user of a software engi-
neering environment should be able to create, reference,
locate, alter, and delete structures defined within the
environment. He should also be able to display meaning-
ful representations of them within the context of any
applicable type or level of abstraction.

Static Analysis*. A software engineering environment
should (1) allow the user to make assertions about the
static structure of a module, program, or system of
programs and then report back to the user which asser-
tions are not valid and why, and (2) allow the user to
request certain information about the static structure
and then report this information back to the user in a
lucid format.

Dynamic Analysis' A software engineering environment
should (1) allow the user to make assertions about the
dynamic structure of a module, program, or system of
programs and then report back to the user which asser-
tions are not valid and why, and (2) allow the user to

101

www.manaraa.com

request certain information about the dynamic structure
and then report this information back to the user in a
lucid format.

8. Data Col 1 ectionl A software engineering environment
should provide for the unobtrusive collection of soft-
ware management data.

9. Audit Trail'. A software engineering environment should
maintain audit trails showing the relationships between
specifications, designs, implementations, maintenance
and enhancements, and the resources expended in these
activities. Further, such audit trails should be
navigable in both directions from any point.

10. Information Organ i zat ion'. The information gleaned from
the various documentation and data collection efforts
should be organised for easy reference and maintenance.

11. Management Control '. A software engineering environment
must be controllable by the management of the organiza-
tion it serves.

12. Organizational Structure'. A software engineering envi-
ronment should be parti ti onabl e along the structural
lines of the organization so that individuals and groups
may have the necessary levels of privacy and isolation
from other individuals and groups, and so the communica-
tions among them may be reasonably controlled by forcing
them through established interfaces. However, it should
also be possible to allow information to flow across
organizational boundaries, when needed, through special-
ly designated and controlled interfaces.

13. Interface Language Design: The language of interaction
between a user and an interactive application should be
designed according to the principles of good programming
language design.

14. Mul ti-level Help'. For any interactive tool, there
should be a hierarchy of "help" levels ranging from no
prompts at all to on—line instruction. Furthermore,
within an environment, the user should be able to set
the "help level" on a tool-by-tool basis (fine granu-
larity of help levels).

15. Configurability'. The user should be able to configure
his interface to the environment (tool) within the con-
straints mandated by higher management. This capability
should display a fine granularity.

10:

www.manaraa.com

16. .lean mg ful Res ponse: The appearance of the display and
the text o-f messages in response to user actions must be
appropriate to those actions.

17. Rapid Response'. Simple and -Frequently used functions
should have an immediate (in terms o-f human re-flexes)
effect upon the display.

IS. Status Reporting'. Lengthy functions should periodically
update the display to assure the user that progress is
being made in carrying out the requested function.

19. Display Inertia: The display should change by the least
amount possible in response to a user action. The
display should not, however, violate the Meaningful
Response principle.

20. Extensibility: An environment should be extensible in
the sense that is must be possible to add tools at any
time and at any level which enjoy the same level of
control and integration as the original tools.

21. Reversibility: Any action taken by a user must be
reversible for some period of time or number of
subsequent actions.

10;

www.manaraa.com

'-1ST OF REFERENCES

Shooman, M. L. , Software Engineering, McGraw-Hill, 193 .>

2. Boehm, B. W. , "Software Engineering", IEEE Trans-
actions on Computers , Dec. 1976, Vol. C-25, No. 12,
pp. 1226-41.

3. Jensen, R. W. and Tomes, C. C. , Software Engineering,
Prentice-Hall, 1979.

4. Bauer, F. L. , "Software Engineering", Information Pro-
cessing 71, North Holland Publishing Co., 1972.

5. MacLennan, B. J., P^iQci p_l_es of P|199C§Q]II}iD9 !=§D9y§9§§-.
Desi^grijL Evaluations and Implementation, Holt, Rinehart
and Winston, 1983.

6. Bohm, C. and Jacopini, G. , "Flow Diagrams, Turing Ma-
chines and Languages with Only Two Formation Rules",
Commun ications of the ACM, Vol. 9, No. 5, pp. 366-71.

7. Dijkstra, E. , "Go To Statement Considered Harmful",
Communications of the ACM, Vol. 11, No. 3, pp. 147-4S.

3. Buxton, J. N. and Druf f el , L. E. , "Rationale for STONE-
MAN", Fourth Internat ional Computer Software and Appli-
cations Conference . October 1930, Chicago , Illinois, pp.
66-72, IEEE, 1980.

9. Hoare, C. A. R. , "The Emperor's Old Clothes", Communica-
tions of the ACM, Vol. 24, No. 2, pp. 75-83.

10. Hayes, J. P., Computer Architecture and DrganisaUcn,
McGraw-Hill , 1978

11. Patterson, D. A. and Sequin, C. H. , "A VLSI RISC",
Computer, Sept. 1982, pp. 8-21

12. Peters, L. J., Software Desj.gn^ methods and Techniques,
Yourdon, Inc., 1981

13. Reifer, D. J., "The Nature of Software Management: A

Primer", Tutorial: Software Management (First Ed.),
IEEE, 1979

104

www.manaraa.com

14. Wasserman, A. J., "The Ecology of Software Devel opmen t

Environments", Iytori_al^ Software Development SCiYiC-QOZ
ments, IEEE, 1931

15. Chapin, N. , Flowcharts, Petrocelli Books, 1971

16. Brooks, Jr., F. P., The ^th^cal M§Qz!D5Gth, Addison-
Wesley, 1975

17. Yourdon, E. , Jechnigues of Program Structure and Design,
Prentice-Hall, 1975

13. Ledgard H. and Chmura, L. , COBOL With St^le, Hayden,
1976

19. Chu, y. , Software Blueprint and Examples, D. C. Heath,
1982

20. Yoder, C. M. and Schrag, M. L. , "Nassi -Shnei derman
Charts: An Alternative to Flowcharts for Design", Pro-
ceedings. ACM SIGSOFT/SIGMETRICS Software Quality and
Assurance Workshop, Nov. 1978

21. Stay, J. F. , "HIPO and Integrated Program Design", IBM
Systems Jorunal , 1976

22. Caine, S. H. and Gordon, E. K. , "PDL - A Tool for Soft-
ware Design", Proceed ings . National Computer Conference,
1975

23. Stevens, W. P., Myers, G. J., and Constantine, L. L.

,

"Structured Design", IBM Systems Journal, 1974

24. Teitelbaum, T. and Reps, T. , "The Cornell Program S/n-
thesizer: A Syntax Directed Programming Environment",
Communications of the ACM, Sept. 1981, pp. 563-73

25. Teitelman, W. and Masinter, L. , "The Interlisp Program-
ming Environment", Computer , April 1981, pp. 25-34

26. Kernighan, B.W. and Plauger, P. J., Software Tools,
Addi son-Wesley, 1976

27. Thayer, R. H. , Pyster, A., and Wood, R. C. , "The Chal-
lenge of Software Engineering Project Management", Com-
puter, Aug. 1980, pp. 51-59

23. Perlis, A. J., Sayward, F. G. , and Shaw, M. (ed.),
Software Metrics, MIT Press, 1981

105

www.manaraa.com

"9. DeMarco, T.

,

Press, 1982
Controlling Software Pr.9j.scts, Yourdon

!0. Spier, M. J., Gutz , S. , and Wasserman , A. I., "The
Ergonomics o-f Software Engineering - Description of the
Problem Space", Software Engineering ^OYi.C9Q{D?[2t s, H.
Hunke (ed.) , North-Holland Publishing Co., 1931

31. k'ernighan, B. W. and Mashey, J. R., "The UNIX Program-
ming Environment", Computer* April 19S1, pp. 25—34

>2. Hansen, W. "User Engineering Principles for Inter-
active Systems", Fall Joint Computer Conference Proceed-
ings, 1971, AFIPS Vol. 39, pp. 523-532

)3. Goldberg, A., "The Influence of an Object-Oriented Lan-
guage on the Programming Environment", Interactive Fr_q-

grammi_ng Environments, Barstow, D. R. , Shrobe, H. E. ,

and Sandewall, E. (ed.), 1984, pp. 141-174

106

www.manaraa.com

INITIAL DISTRIBUTION LI3T

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Commandant (G-PTE) 2
U. S. Coast Guard
Washington, D. C. 22590

4. Commander (As) 1

Atlantic Area Coast Guard
Room 3, Building 110 (AMVER)
Governors Island, NY 10004

5. Professor B. J. MacLennan, Code 52 Ml 2
Naval Postgraduate School
Monterey, California 93943

6. Professor G. H. Bradley, Code 52 Bz 2
Naval Postgraduate School
Monterey, California 93943

7. Mr. E. P. Prost, Jr. 1

1954 Bruce Street
Lakeland, Florida 33801

8. Captain L. L. Jackson 1

6542 Divine Street
McLean, Virginia 22101

9. Commander J. H. Hanna 1

9311 Locksley Road
Fort Washington, Maryland 20744

10. Lieutenant Commander J. R. Frost 2
6542 Divine Street
McLean, Virginia 22101

107

www.manaraa.com13 3 7

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

2XU178

Frost
Principles of soft-

ware engineering envi-

ronment design.

3%W°

*.ii)178

Thesis
F89T2
c.l

Frost
Principles of soft-

ware engineering envi-
ronment design.

www.manaraa.com

